Abstract
As construction duration significantly influences the performance and the success of construction projects, it is necessary to appropriately manage the impact factors affecting construction duration. Recently, interest in the construction industry has been rising due to the recent change in the construction legal system, and the competition among the construction companies on construction time. However, the impact factors are extremely diverse. The existing productivity data on impact factors is not sufficient to properly identify the impact factor and measure the productivity from various perspectives, such as subcontractor, time, crew, work and so on. In this respect, a multidimensional analysis by a data warehouse is very helpful in order to view the manner in which productivity is affected by impact factors from various perspectives. Therefore, this research proposes a method that effectively takes the diverse productivity data of impact factors, and generates a multidimensional analysis. Decision tree analysis, a data mining technique, is also applied in this research in order to supply construction managers with appropriate productivity data on impact factors during the construction management process.
건설공사의 공사기간은 건설프로젝트의 성공적인 완수를 위하여 중요한 부분을 차지하기 때문에 공사기간에 영향을 미치는 요인들을 체계적으로 관리하는 것이 필요하다. 최근에는 건설 제도적 변화로 건설공사의 공사기간에 대한 관심이 증대되고 있다. 그러나 건설 프로젝트의 공사기간에 미치는 영향요인은 매우 다양하며, 각 요인들 중 어떤 요인이 어느 정도 작업의 생산성에 영향을 미치는지에 대한 데이터의 체계적인 활용이 부족하다. 또한 특정 프로젝트, 특정 작업, 특정 협력업체 등에 영향을 미치는 요인이 무엇인지 또는 전체 프로젝트에 공통적으로 영향을 미치는 요인이 무엇인지를 인식하는 것조차 어려운 경우가 많다. 그러나 데이터 웨어하우스 기술의 다차원 분석을 활용함으로써 다양한 각도에서의 공사기간 영향요인이 미치는 생산성을 파악할 수 있다. 이에 본 연구는 건설공사에서 발생하는 다양한 영향요인에 따른 작업 생산성 데이터를 다차원적으로 분석하고 의사결정에 활용할 수 있는 데이터 마이닝 기술을 적용하여 기존 생산성 데이터들을 효과적으로 활용하는 방법을 제시한다.