DOI QR코드

DOI QR Code

Nanotechnology in Cancer Therapy: Overview and Applications

  • Received : 2011.03.21
  • Accepted : 2011.04.12
  • Published : 2011.04.20

Abstract

Nanotechnology for cancer therapy is playing a pivotal role in dramatically improving current approaches to cancer detection, diagnosis, and therapy while reducing toxic side effects associated with previous cancer therapy. A widespread understanding of these new technologies will lead to develop the more refined design of optimized nanoparticles with improved selectivity, efficacy and safety in the clinical practice of oncology. This review provides an integrated overview of applications and advances of nanotechnology in cancer therapy, based on molecular diagnostics, treatment, monitoring, target drug delivery, approved nanoparticle-based chemotherapeutic agents, and current clinical trials in the development of nanomedicine and ultimately personalized medicine.

Keywords

References

  1. Alivisatos, P., 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47-52. https://doi.org/10.1038/nbt927
  2. Allen, T.M., 2002. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2(10), 750-763. https://doi.org/10.1038/nrc903
  3. Batist, G., 2007. Cardiac safety of liposomal anthracyclines. Cardiovasc. Toxicol. 7, 72-74. https://doi.org/10.1007/s12012-007-0014-4
  4. Batist, G., Gelmon, K.A., Chi, K.N., Miller, W.H. Jr., Chia, S.K., Mayer, L.D., Swenson, C.E., Janoff, A.S., Louie, A.C., 2009. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin. Cancer Res. 15, 692-700. https://doi.org/10.1158/1078-0432.CCR-08-0515
  5. Black, K.C., Kirkpatrick, N.D., Troutman, T.S., Xu, L., Vagner, J., Gillies, R. J., Barton, J.K., Utzinger, U., and Romanowski, M., 2008. Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol. Imaging 7(1), 50-57.
  6. Cardinal, J., Klune, J.R., Chory, E., Jeyabalan, G., Kanzius, J.S., Nalesnik, M., Geller, D. A., 2008. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144, 125-132. https://doi.org/10.1016/j.surg.2008.03.036
  7. Carter, P.J., Senter, P.D., 2008. Antibody-drug conjugates for cancer therapy. Cancer J. 14, 154-169. https://doi.org/10.1097/PPO.0b013e318172d704
  8. Chia, S., Clemons, M., Martin, L.A., Rodger, S.A., Gelmon, K., Pond, G.R., Panasci, L., 2006. Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: a multicenter phase II trial. J. Clin. Oncol. 24, 2773-2778. https://doi.org/10.1200/JCO.2005.03.8331
  9. Cho, K., Wang, X., Nie, S., Chen, Z.G., and Shin, D.M., 2008. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310-1316. https://doi.org/10.1158/1078-0432.CCR-07-1441
  10. Choi, J.S., Jun, Y.W., Yeon, S.I., Kim, H.C., Shin, J. S., Cheon, J., 2006. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 128, 15982-15983. https://doi.org/10.1021/ja066547g
  11. Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., Grobmyer, S.R., 2006. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459-466. https://doi.org/10.1002/cncr.22035
  12. Danson, S., Ferry, D., Alakhov, V., Margison, J., Kerr, D., Jowle, D., Brampton, M., Halbert, G., Ranson, M., 2004. Phase I dose escalation and pharmacokinetic study of pluronicpolymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer. 90, 2085-2091. https://doi.org/10.1038/sj.bjc.6601856
  13. De Jong, W.H., Borm, P.J., 2008. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3(2), 133-149.
  14. Ducry, L., Stump, B., 2010. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 21, 5-13. https://doi.org/10.1021/bc9002019
  15. Ferrari, M., 2005. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161-171. https://doi.org/10.1038/nrc1566
  16. Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., Barenholz, Y., 1994. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethyleneglycol coated liposomes. Cancer Res. 54, 987-992.
  17. Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., 2005. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63-72. https://doi.org/10.1016/j.copbio.2004.11.003
  18. Gaster, R.S., Hall, D.A., Nielsen, C.H., Osterfeld, S.J., Yu, H., Mach, K.E., Wilson, R.J., Murmann. B., Liao, J.C., Gambhir, S.S., Wang, S.X., 2009. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327-1332. https://doi.org/10.1038/nm.2032
  19. Grobmyer, S.R., Iwakuma, N., Sharma, P., Moudgil B.M., 2010. What is cancer nanotechnology? Methods Mol. Biol. 624, 1-9. https://doi.org/10.1007/978-1-60761-609-2_1
  20. Grodzinski, P. Silver, M., Molnar, L.K., 2006. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn. 6, 307-318. https://doi.org/10.1586/14737159.6.3.307
  21. Hilger, I., Hergt, R., Kaiser, W.A., 2005. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE, Proc. Nanobiotechnol. 152, 33-39. https://doi.org/10.1049/ip-nbt:20055018
  22. Huff, T.B., Tong, L., Zhao, Y., Hansen, M.N., Cheng, J.X., Wei, A., 2007. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2, 125-132. https://doi.org/10.2217/17435889.2.1.125
  23. Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A., Watanabe, Y., Kobayashi, T., 2004. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 212, 167-175. https://doi.org/10.1016/j.canlet.2004.03.038
  24. Jain, K.K., 2005. Role of nanobiotechnology in developing personalized medicine for cancer. Technol. Cancer Res. Treat. 4, 407-416.
  25. Jain, K.K., 2007. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002-2009. https://doi.org/10.1373/clinchem.2007.090795
  26. Jain, K.K., 2010. Advances in the field of nanooncology. BMC Medicine 8:83. https://doi.org/10.1186/1741-7015-8-83
  27. Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., Marks, J. D., Benz, C.C., and Park, J.W., 2006 Antibody targeting of longcirculating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13), 6732-6740. https://doi.org/10.1158/0008-5472.CAN-05-4199
  28. Kong, G., Braun, R.D., Dewhirst, M.W., 2000. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60(16), 4440-4445.
  29. Krishnan, S., Diagaradjane, P., Cho, S.H., 2010. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int. J. Hyperthermia 26, 775-789. https://doi.org/10.3109/02656736.2010.485593
  30. Kumar, M., Yigit, M., Dai, G., Moore, A., Medarova, Z., 2010. Image-guided breast tumor therapy using a siRNA nanodrug. Cancer Res. 70,7553-7561. https://doi.org/10.1158/0008-5472.CAN-10-2070
  31. Lammers, T., Hennink, W. E., and Storm,G., 2008. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer 99(3), 392-397. https://doi.org/10.1038/sj.bjc.6604483
  32. Maeda, H., Matsumura, Y., 1989. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst. 6(3), 193-210.
  33. Maruyama, K., Unezaki, S., Yuda, T., Ishida, O., Takahashi, N., Suginaka, A., et al., 1994. Enhanced delivery and antitumor effect of doxorubicin encapsulated in long-circulating liposomes. J. Liposome Res. 4, 143-165. https://doi.org/10.3109/08982109409037034
  34. Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., Takahashi, K., 2004a. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol. 15, 517-525. https://doi.org/10.1093/annonc/mdh092
  35. Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Okusaka, T., Ueno, H., Ikeda, M., Watanabe, N., 2004b. Phase I clinical trial and pharmacokinetic evaluations of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775-1781. https://doi.org/10.1038/sj.bjc.6602204
  36. Matsumura, Y., 2008. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev. 60, 899-914. https://doi.org/10.1016/j.addr.2007.11.010
  37. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-544 https://doi.org/10.1126/science.1104274
  38. Misra, R., Acharya, S., Sahoo, S.K., 2010. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today 15, 19-20.
  39. Mross, K., Niemann, B., Massing, U., Drevs, J., Unger, C., Bhamra, R., 2004. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother. Pharmacol. 54, 514-524. https://doi.org/10.1007/s00280-004-0825-y
  40. Nie, S. Nie, S., Xing, Y., Kim, G.J., Simons, J.W., 2007., Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257-288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025
  41. Park, J.W., Benz, C.C., and Martin, F.J., 2004. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31(6 Suppl 13), 196-205. https://doi.org/10.1053/j.seminoncol.2004.08.009
  42. Pautler, M., Brenner, S., 2010. Nanotechnology and human health: risks and Benefits. Int. J. of Nanomedicine 5, 803-809.
  43. Puri, A., Kramer-Marek, G., Campbell-Massa, R., Yavlovich, A., Tele, S.C., Lee S.B., Clogston, J.D., Patri, A.K., Blumenthal, R., Capala, J., 2008. HER2-specific affibody conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res. 18, 293-307. https://doi.org/10.1080/08982100802457377
  44. Rahman, A.M., Yusuf, S., Ewer, M.S., 2007. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomedicine 2, 567-583.
  45. Richter, H., Kettering, M., Wiekhorst, F., Steinhoff, U., Hilger, I., Trahms, L., 2010. Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys. Med. Biol. 55, 623-633. https://doi.org/10.1088/0031-9155/55/3/005
  46. Sahoo, S.K., Ma,W., Labhasetwar,V., 2004. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer 112(2), 335-340. https://doi.org/10.1002/ijc.20405
  47. Sakamoto, J., Annapragada, A., Decuzzi, P., Ferrari, M., 2007. Antibiological barrier nanovector technology for cancer applications. Expert Opin. Drug Deliv. 4, 359-369. https://doi.org/10.1517/17425247.4.4.359
  48. Santra, S., Kaittanis, C., Grimm, J., and Perez, J. M., 2009. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5(16), 1862-1868. https://doi.org/10.1002/smll.200900389
  49. Santra, S., Liesenfeld, B., Dutta, D., Chatel, D., Batich, C. D., Tan, W., Moudgil, B. M., Mericle, R. A., 2005. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotechnol. 5(6), 899-904. https://doi.org/10.1166/jnn.2005.146
  50. Seymour, L.W., Ferry, D.R., Kerr, D.J., Rea, D., Whitlock, M., Poyner, R., Boivin, C., Hesslewood, S., Twelves, C., Blackie, R., Schatzlein, A., Jodrell, D., Bissett, D., Calvert, H., Lind, M., Robbins, A., Burtles, S., Duncan, R., Cassidy, J., 2009. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629-1636.
  51. Shenoi, M.M., Anderson, J., Bischof, J.C., 2009. Nanoparticle enhanced thermal therapies. Conf Proc IEEE Eng. Med. Biol. Soc. 2009, 1979-1982.
  52. Siegal, T., Horowitz, A., Gabizon, A., 1995. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg. 83, 1029-1037. https://doi.org/10.3171/jns.1995.83.6.1029
  53. Smith, B.R., Cheng, Z., De, A., Koh, A.L., Sinclair, R., Gambhir, S.S., 2008, Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature. Nano. Lett. 8(9), 2599-2606. https://doi.org/10.1021/nl080141f
  54. Sutton, D., Nasongkla, N., Blanco, E., Gao, J., 2007. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 24, 1029-1046. https://doi.org/10.1007/s11095-006-9223-y
  55. Tassinari, O.W., Caiazzo, R.J., Jr., Ehrlich, J.R., and Liu, B.C., 2008. Identifying autoantigens as theranostic targets: antigen arrays and immunoproteomics approaches. Curr. Opin. Mol. Ther. 10(2), 107-115.
  56. Valle, J.W., Armstrong, A., Newman, C., Alakhov, V., Pietrzynski, G., Brewer, J., Campbell, S., Corrie, P., Rowinsky, E.K., Ranson, M., 2010. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest. New Drugs, Published online, DOI 10.1007/s10637-010-9399-1.
  57. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., and Jain, R.K., 1995. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55(17), 3752-3756.

Cited by

  1. A multifunctional silver nanocomposite for the apoptosis of cancer cells and intracellular imaging vol.53, pp.41, 2017, https://doi.org/10.1039/C7CC02834B
  2. A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy vol.9, pp.33, 2018, https://doi.org/10.1039/C8SC02446D