DOI QR코드

DOI QR Code

ENERGY SPECTRUM OF NONTHERMAL ELECTRONS ACCELERATED AT A PLANE SHOCK

  • Kang, Hye-Sung (Department of Earth Sciences, Pusan National University)
  • Received : 2011.02.12
  • Accepted : 2011.03.21
  • Published : 2011.04.30

Abstract

We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields, using time-dependent, diffusive shock acceleration (DSA) simulations, including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum $p_{eq}$. In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as $p^{-1}$. Thus the slope of the downstream integrated spectrum steepens by one power of p for $p_{br}$ < p < $p_{eq}$, where the break momentum decreases with the shock age as $p_{br}\;{\infty}\;t^{-1}$. In a CR modified shock, both the proton and electron spectrum exhibit a concave curvature and deviate from the canonical test-particle power-law, and the upstream integrated electron spectrum could dominate over the downstream integrated spectrum near the cutoff momentum. Thus the spectral shape near the cutoff of X-ray synchrotron emission could reveal a signature of nonlinear DSA.

Keywords

References

  1. Abdo, A. A. et al. 2010, Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT, Science, 327, 1103 https://doi.org/10.1126/science.1182787
  2. Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  3. Berezhko E. G., Ksenofontov L.T., & Volk, H. J. 2002, Emission of SN 1006 Produced by Accelerated Cosmic Rays, A&A, 395, 943 https://doi.org/10.1051/0004-6361:20021219
  4. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The Case of SN1006, A&A, 505, 169 https://doi.org/10.1051/0004-6361/200911948
  5. Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic_Ray Origin, Phys. Rept., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  6. Blasi, P. 2010, Shock Acceleration of Electrons in the Presence of Synchrotron Losses - I. Test-Particle Theory, MNRAS, 402, 2807 https://doi.org/10.1111/j.1365-2966.2009.16110.x
  7. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  8. Heavens, A. F., & Meisenheimer, K. 1987 Particle Acceleration in Extrgalactic Sources: the Role of Synchrotron Losses in Determining the Spectrum, MNRAS, 225, 335 https://doi.org/10.1093/mnras/225.2.335
  9. Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks, ApJ, 413, 619 https://doi.org/10.1086/173031
  10. Kang, H. 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
  11. Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  12. Kang, H. & Jones, T. W. 2007, Self-Similar Evolution of Cosmic-Ray-Modi¯ed Quasi-Parallel Plane Shocks, Astropart. Phys, 28, 232 https://doi.org/10.1016/j.astropartphys.2007.05.007
  13. Kang, H., Ryu, D., & Jones, T. W. 2009, Self-Similar Evolution of Cosmic-ray Modified Shocks:The Cosmic-Ray Spectrum, ApJ, 695, 1273 https://doi.org/10.1088/0004-637X/695/2/1273
  14. Kang, H., & Ryu, D. 2010, Diffusive Shock Acceleration in Test-particle Regime, ApJ, 721, 886 https://doi.org/10.1088/0004-637X/721/1/886
  15. Longair, M. S. 1994, High Energy Astrophysics, Volume 2. (Cambridge Univ. Press, Cambridge, 1994)
  16. Malkov M. A., & Drury, L.O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  17. Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Am-plified Magnetic Field and Maximum Energy, A&A, 453, 387 https://doi.org/10.1051/0004-6361:20064985
  18. Reynolds, S. P. 2008, Supernova Remnants at High Energy, ARA&A, 46, 89 https://doi.org/10.1146/annurev.astro.46.060407.145237
  19. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  20. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Ampli¯cation in Tycho and Other Shell-Type Supernova Remnants, A&A, 433,229 https://doi.org/10.1051/0004-6361:20042015
  21. Webb, G. M., Drury, L. O'C., & Biermann, P. 1984, Diffusive Shock Acceleration of Energetic Electrons Subject to Synchrotron Losses, A&A, 137, 185
  22. Zirakashvili V. N., & Aharonian F. A. 2007, Analytical Solutions for Energy Spectra of Electrons Accelerated by Nonrelativistic Shock-Waves in Shell TypeSupernova Remnants, A&A, 465, 695 https://doi.org/10.1051/0004-6361:20066494

Cited by

  1. NONTHERMAL RADIATION FROM COSMIC-RAY MODIFIED SHOCKS vol.745, pp.2, 2012, https://doi.org/10.1088/0004-637X/745/2/146
  2. Constraints on magnetic field strength in the remnant SN 1006 from its non-thermal images vol.419, pp.1, 2012, https://doi.org/10.1111/j.1365-2966.2011.19722.x
  3. RE-ACCELERATION MODEL FOR RADIO RELICS WITH SPECTRAL CURVATURE vol.823, pp.1, 2016, https://doi.org/10.3847/0004-637X/823/1/13
  4. INJECTION OF κ-LIKE SUPRATHERMAL PARTICLES INTO DIFFUSIVE SHOCK ACCELERATION vol.788, pp.2, 2014, https://doi.org/10.1088/0004-637X/788/2/142
  5. The radio relic in Abell 2256: overall spectrum and implications for electron acceleration vol.575, 2015, https://doi.org/10.1051/0004-6361/201423972
  6. CURVED RADIO SPECTRA OF WEAK CLUSTER SHOCKS vol.809, pp.2, 2015, https://doi.org/10.1088/0004-637X/809/2/186
  7. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE vol.777, pp.1, 2013, https://doi.org/10.1088/0004-637X/777/1/25
  8. The widest frequency radio relic spectra: observations from 150 MHz to 30 GHz vol.455, pp.3, 2016, https://doi.org/10.1093/mnras/stv2472
  9. The dynamic age of Centaurus A vol.16, pp.4, 2014, https://doi.org/10.1088/1367-2630/16/4/045001
  10. RADIO AND X-RAY SHOCKS IN CLUSTERS OF GALAXIES vol.812, pp.1, 2015, https://doi.org/10.1088/0004-637X/812/1/49
  11. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS vol.756, pp.1, 2012, https://doi.org/10.1088/0004-637X/756/1/97
  12. Time-dependent model of particle acceleration in the vicinity of approaching magnetohydrodynamic flows vol.461, 2013, https://doi.org/10.1088/1742-6596/461/1/012007
  13. Shock Acceleration Model for the Toothbrush Radio Relic vol.840, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa6d0d