Pervaporation of n-Butanol/water Mixture through Organophilic ZSM-5 Zeolite Membrane

소수성 ZSM-5 제올라이트 분리막을 이용한 n-부탄올/물 혼합물의 투과증발

  • Cho, Moon-Hee (Dept. of Chem. Eng., College of Eng., Chungnam National University) ;
  • Kong, Chang-In (Dept. of Chem. Eng., College of Eng., Chungnam National University) ;
  • Lee, Yong-Taek (Dept. of Chem. Eng., College of Eng., Chungnam National University)
  • Received : 2011.09.02
  • Accepted : 2011.11.04
  • Published : 2011.12.20

Abstract

Organophilic ZSM-5 membrane was synthesized on the inside of a porous stainless steel support by a hydrothermal secondary growth with seed crystals. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the operating temperature. The concentration of n-butanol was changed from 0.001 mole fraction to 0.015 mole fraction with an interval of 0.005 mole fraction; the operating temperature was controlled to be 25C, $35^{\circ}C$ and $45^{\circ}C$. When the operating temperature was $45^{\circ}C$, the flux of n-butanol significantly increased from 2 to $27g/m^2/hr$ as the mole fraction of n-butanol in the feed side increased from 0.001 to 0.015. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.0016 to 0.052 mole fraction. When the feed concentration was 0.015, the flux of n-butanol significantly increased from 13 to $27g/m^2/hr$ as the operating temperature increased from $25^{\circ}C$ to $45^{\circ}C$. As a result, the concentration of n-butanol in the permeate also increased from 0.045 to 0.052 mole fraction.

소수성 ZSM-5 분리막을 결정성장핵의 수열합성 2차 성장법으로 다공성 스테인레스 스틸 지지체의 안쪽에 합성하였으며, 이렇게 제조한 분리막을 이용하여 n-부탄올 수용액으로부터 n-부탄올을 선택적으로 분리하였다. 공급 수용액의 농도 변화 및 운전 온도의 변화에 따른 투과증발 특성을 관찰하였다. 공급 수용액 내의 n-부탄올 농도를 각각 0.001, 0.005, 0.01 그리고 0.015 몰분율로, 운전 온도는 25C, $35^{\circ}C$ 그리고 $45^{\circ}C$로 바꾸면서 실험하였다. 운전 온도가 $45^{\circ}C$인 실험조건에서 공급측 n-부탄올의 몰분율이 0.001에서 0.015로 증가함에 따라 n-부탄올의 플럭스는 약 $2g/m^2/hr$ 에서 $27g/m^2/hr$ 로 크게 증가하였다. 이 결과로 투과물 내의 n-부탄올의 농도가 0.0016 몰분율에서 0.052 몰분율로 상당히 증가함을 알 수 있었다. 공급 농도가 0.015인 상태에서 운전 온도가 $25^{\circ}C$에서 $45^{\circ}C$로 증가함에 따라 n-부탄올의 플럭스는 약 $13g/m^2/hr$ 에서 $27g/m^2/hr$ 로 크게 증가하였으며, 투과물 내의 n-부탄올 농도도 따라서 0.045에서 0.052로 증가함을 관찰할 수 있었다.

Keywords

References

  1. N. Qureshi, B. C. Saha, R. E. Hector, S. R. Hughes, and M. A. Cotta, "Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I-Batch fermentation", Biomass and Bioenergy, 32, 168 (2008). https://doi.org/10.1016/j.biombioe.2007.07.004
  2. A. M. Urtiaga, E. D. Gorri, and I. Ortiz, "Modeling of the concentration - polarization effects in a pervaporation cell with radial flow", Sep. Purif. Technol., 17, 41 (1999). https://doi.org/10.1016/S1383-5866(99)00025-8
  3. C. C. Pereira, A. C. Habert, R. Nobrega, and C. P. Borges, "New insights in the removal of diluted volatile organic compounds from dilute aqueous solution by pervaporation process", J. Membr. Sci., 138, 227 (1998). https://doi.org/10.1016/S0376-7388(97)00225-1
  4. D. Hofmann, L. Fritz, and D. Paul, "Molecular modelling of pervaporation separation of binary mixtures with polymeric membranes", J. Membr. Sci., 144, 145 (1998). https://doi.org/10.1016/S0376-7388(98)00048-9
  5. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, J. H. Moon, and C. H. Lee, "A Simultaneous Improvement in CO2 Flux and CO2/N2 Separation Factor of Sodium-type FAU Zeolite Membranes through 13X Zeolite Beads Embedding", Membrane Journal, 17, 269 (2007).
  6. H. S. Choi, J. H. Kim, S. K. Lee, and H. H. Park, "Dehydration characteristics of i-propyl alcohol aqueous solution through NaA zeolite membrane", Membrane Journal, 12, 158 (2002).
  7. S. G. Li, V. A. Tuan, R. D. Noble, and J. L. Falconer, "Pervaporation of water/THF mixtures using zeolite membranes", Ind. Eng. Chem. Res., 40, 4577 (2001). https://doi.org/10.1021/ie010140x
  8. D. Shah, K. Kissick, A. Ghorpade, R. Hannah, and D. Bhattacharyya, "Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results", J. Membr. Sci., 179, 185 (2000). https://doi.org/10.1016/S0376-7388(00)00515-9
  9. W. F. Guo, T. S. Chung, and T. Matsuura, "Pervaporation study on the dehydration of aqueous butanol solution: a comparison of flux vs. permeance, separation factor vs. selectivity", J. Membr. Sci., 245, 199 (2004). https://doi.org/10.1016/j.memsci.2004.07.025
  10. K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245 (2000). https://doi.org/10.1021/ie990902c
  11. I. Kumakiri, T. Yamaguchi, and S. Nakao, "Preparation of zeolite A and faujasite membranes from a clear solution", Ind. Eng. Chem. Res., 38, 4682 (1999). https://doi.org/10.1021/ie9902683
  12. J. L. Jafar, and P. M. Budd, "Separation of alcohol/ water mixtures by pervaporation through zeolite A membranes", Microporous Materials, 12, 305 (1997). https://doi.org/10.1016/S0927-6513(97)00080-1
  13. M. Kondo, M. Komori, H. Kita, and K. Okamoto, "Tubular-type pervaporation module with zeolite NaA membrane", J. Membr. Sci., 133, 133 (1997). https://doi.org/10.1016/S0376-7388(97)00087-2
  14. H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. Okamoto, "Synthesis of a zeolite NaA zeolite membrane for pervaporation of water/organic mixtures", J. Mater. Sci. Lett., 14, 206 (1995). https://doi.org/10.1007/BF00318258
  15. Q. Liu, R. D. Noble, J. L. Falconer, and H. H. Funke, "Organics/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  16. S. E. Park, J. S. Chang, H. S. Roh, and K. S. Chung, "Preparations and applications of zeolite membranes", Membrane Journal, 18, 177 (1998).
  17. M. Noack, P. Kölsch, J. Caro, M. Schneider, P. Toussaint, and I. Sieber, "MFI membranes of different Si/Al ratios for pervaporation and steam permeation", Microporous Mesoporous Mater., 35-36, 253 (2000).
  18. M. Nomura, T. Yamaguchi, and S. Nakao, "Ethanol/water transport through silicalite membranes", J. Membr. Sci., 144, 161 (1998). https://doi.org/10.1016/S0376-7388(98)00043-X
  19. S. G. Li, V. A. Tuan, R. D. Noble, and J. L. Falconer, "ZSM-11 membranes: characterization and pervaporation performance", AIChE J., 48, 269 (2002). https://doi.org/10.1002/aic.690480211
  20. J. F. Smetana, J. L. Falconer, and R. D. Noble, "Separation of methyl ethyl ketone from water by pervaporation using a silicalite membrane", J. Membr. Sci., 114, 127 (1996). https://doi.org/10.1016/0376-7388(96)00013-0
  21. T. Sano, M. Hasegawa, Y. Kawakami, Y. Kiyozumi, H. Yanagishita, D. Kitamoto, and F. Mizukami, "Potentials of silicalite membranes for the separation of alcohol/water mixtures", Stud. Surf. Sci. Catal., 84, 1175 (1994).
  22. H. Suzuki, "Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof", US Patent 4,699,892, October 13 (1987).
  23. K. Weh, M. Noack, I. Sieber, and J. Caro, "Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes", Microporous Mesoporous Mater., 54, 27 (2002). https://doi.org/10.1016/S1387-1811(02)00381-5
  24. H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, "Preparation of Faujasite membranes and their permeation properties", Sep. Purif. Technol., 25, 261 (2001). https://doi.org/10.1016/S1383-5866(01)00110-1
  25. T. C. Bowen, S. G. Li, V. A. Tuan, J. L. Falconer, and R. D. Noble, "Pervaporation of aqueous organic mixtures through Ge-ZSM-5 zeolite membranes", Desalination, 147, 327 (2002). https://doi.org/10.1016/S0011-9164(02)00560-X
  26. V. A. Tuan, S. G. Li, J. L. Falconer, and R. D. Noble, "Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes", J. Membr. Sci., 196, 111 (2002). https://doi.org/10.1016/S0376-7388(01)00590-7
  27. http://www.iza-online.org/synthesis/Recipes/XRD/Hi%20Alumina%20ZSM-5.jpg, March 12 (2002).