Abstract
Now a days, to make good use of tags is a general tendency when users need to upload or search some multimedia data such as images and videos on the Web. In this paper, we introduce an approach to calculate semantic importance of tags and to make re-ranking with them on tagged Web image retrieval. Generally, most photo images stored on the Web have lots of tags added with user's subjective judgements not by the importance of them. So they become the cause of precision rate decrease with simple matching of tags to a given query. Therefore, if we can select semantically important tags and employ them on the image search, the retrieval result would be enhanced. In this paper, we propose a method to make image retrieval re-ranking with the key tags which share more semantic information with a query or other tags based on Wikipedia-based semantic relatedness. With the semantic relatedness calculated by using huge on-line encyclopedia, Wikipedia, we found the superiority of our method in precision and recall rate as experimental results.
오늘날 이미지, 동영상과 같은 멀티미디어 데이터를 웹 공간에 저장하고 검색할 때, 태그를 이용하는 추세는 보편화되어 있다. 본 논문에서는 태깅된 웹 이미지의 검색에서 태그들의 의미적 중요도를 계산하고, 이를 이용하여 검색 순위를 조정하는 시도를 소개한다. 일반적으로 웹상에 저장된 대부분의 사진 이미지들은 실제로는 중요하지 않지만 사용자의 주관적인 판단으로 추가된 태그들을 다수 포함하고 있으며, 이들은 태그의 단순 비교방식으로 이미지를 검색할 때 정확도를 떨어트리는 주요 원인이 된다. 따라서 어떤 이미지에 붙은 수많은 태그들 중에서 의미적으로 보다 중요한 태그들을 찾아내어 검색에 이용한다면 더욱 만족스러운 검색 결과를 얻을 수 있다. 본 논문에서는 위키피디아 기반의 의미 연관성을 활용하여 검색어 또는 다른 태그들과의 의미 연관성이 높은 태그를 해당 이미지의 대표 태그로 판단하고 이를 이용하여 검색 순위를 조정하는 방법을 제안한다. 실험 결과, 방대한 온라인 백과사전인 위키피디아를 이용하여 계산된 의미적 연관성을 이용함으로써 기존의 연구에 비해 향상된 결과를 얻을 수 있었다.