DOI QR코드

DOI QR Code

An Embedding of Multiple Edge-Disjoint Hamiltonian Cycles on Enhanced Pyramid Graphs

  • Chang, Jung-Hwan (Division of Digital Media Engineering, Pusan University of Foreign Studies)
  • Received : 2010.10.20
  • Accepted : 2011.02.22
  • Published : 2011.03.31

Abstract

The enhanced pyramid graph was recently proposed as an interconnection network model in parallel processing for maximizing regularity in pyramid networks. We prove that there are two edge-disjoint Hamiltonian cycles in the enhanced pyramid networks. This investigation demonstrates its superior property in edge fault tolerance. This result is optimal in the sense that the minimum degree of the graph is only four.

Keywords

References

  1. F. Berman and L. Snyder, “On mapping parallel algorithms into parallel architectures,” Jr. of Parellel and Distrib. Comput., Vol.4, No.1, 1987, pp.439-458. https://doi.org/10.1016/0743-7315(87)90018-9
  2. S. G. Akl, “Parallel Computation: Models and Methods,” Prentice Hall, NJ, 1997.
  3. B. Monien and H. Sudborough, “Embedding one interconnection network in another,” Computing Supplement, Vol.7, No.1, 1990, pp.257-282. https://doi.org/10.1007/978-3-7091-9076-0_13
  4. R. Miller and Q. F. Stout, “Data movement techniques for the pyramid computer,” SIAM J. on. Comput., Vol.16, No.1, 1987, pp.38-60. https://doi.org/10.1137/0216004
  5. F. T. Leighton, “Introduction to parallel algorithms and architectures: arrays, trees, hypercubes,” Morgan Kaufmann, CA, 1991.
  6. Q. F. Stout, “Mapping vision algorithms to parallel architectures,” Proc. of the IEEE, Vol.7, No.1, 1988, pp.982-995.
  7. L. Cinque and G. Bongiovanni, “Parallel prefix computation on a pyramid computer,” Patt. Recog. Lett., Vol.16, No.1, 1995, pp.19-22. https://doi.org/10.1016/0167-8655(94)00067-D
  8. J. F. Jenq and S. Sahni, “Image shrinking and expanding on a pyramid,” IEEE Trans. Parallel Distrib. Syst., Vol.4, No.11, 1993, pp.1291-1296. https://doi.org/10.1109/71.250106
  9. R. Cipher and H. L. G. Sanz, “SIMD architectures and algorithms for image processing and computer vision,” IEEE Trans. Acoust. Speech Signal Process., Vol.37, No.12, 1989, pp.2158 2174. https://doi.org/10.1109/29.45558
  10. R. Miller and Q. F. Stout, “Data movement techniques for the pyramid computer,” SIAM J. Comput., Vol.16, No.1, 1987, pp.38-60. https://doi.org/10.1137/0216004
  11. H. Sarbazi-Azad, M. Ould-Khaoua, and L. M. Mackenzie, “Algorithmic construction of Hamiltonians in pyramids,” Inform. Process. Lett., Vol.80, No.2, 2001, pp.75-79. https://doi.org/10.1016/S0020-0190(01)00149-1
  12. D. –R. Dui, Y. -C. Chen, and R. –Y. Wu, “Proof that pyramid networks are 1 Hamiltonian-connected with high probability,” Information Sciences, Vol.177, No.24, 2007, pp.4188-4199. https://doi.org/10.1016/j.ins.2007.03.013
  13. R. –Y. Wu and D. -R. Duh, “Hamiltonicity of the pyramid network with or without fault,” Journal of Information Science and Engineering, Vol.25, 2009, pp.531-542.
  14. F. Cao, D. Z. Du, D. F. Hsu, and S. H. Teng, “Fault tolerance properties of pyramid networks,” IEEE Trans. Comput., Vol.48, No.1, 1999, pp.88-93. https://doi.org/10.1109/12.743415
  15. J. S. -T. Juan and C. -M. Huang, “On the strong distance problems of pyramid networks,” Applied Mathematics and Computation, Vol.195, 2008, pp.154-161. https://doi.org/10.1016/j.amc.2007.04.076
  16. K. W. Tang and S. A. Padubidri, “Diagonal and toroidal mesh networks,” IEEE Trans. Comput, Vol.43, No.7, 1994, pp.815-826. https://doi.org/10.1109/12.293260
  17. Y. -C. Chen, D. -R. Duh and H. -J. Hsieh, “On the enhanced pyramid network,” Proc. 2004 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, 2004, pp.1483-1489.
  18. Y. -C. Chen and D. -R. Duh, “Proof that enhanced pyramid networks are 2-edge-Hamiltonicity,” Proc. The 23rd Workshop on Combinatorial Mathematics and Computation Theory, Las Vegas, Nevada, 2006, pp.76-84.
  19. Y. -C. Chen and D. -R. Duh, “An optimal broadcasting algorithm for the enhanced pyramid network,” Proc. The 22nd Workshop on Combinatorial Mathematics and Computation Theory, National Cheng Kung University, Taiwan, 2005, pp.206-211.
  20. A. Caruso, S. Chessa, P. Maestrini, and P. Santi, “Fault-diagnosis of grid structures,” Theoretical Computer Science, Vol.290, No.2, 2003, pp.1149-1174. https://doi.org/10.1016/S0304-3975(01)00200-6