DOI QR코드

DOI QR Code

Atom-efficient Preparation of 9, 9'-Bis[4-(2'-hydroxy-3'-acryloyloxypropoxy)phenyl]fluorene

9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시) 페닐]플루오렌의 원자효율적 합성

  • 정혁진 (영남대학교 이과대학 화학과) ;
  • 홍성재 (주식회사 이그잭스 PR 사업부) ;
  • 서광범 (주식회사 이그잭스 PR 사업부) ;
  • 심재진 (영남대학교 화학공학부) ;
  • 나춘섭 (영남대학교 이과대학 화학과)
  • Received : 2011.10.27
  • Accepted : 2011.12.02
  • Published : 2011.12.30

Abstract

Atom-efficient preparation of 9, 9'-bis[4-(2'-hydroxy-3'-acryloyloxypropoxy) phenyl]fluorene (3), the extensively used building block for fluorene-containing acrylic epoxy polymers has been described. The epoxide ring opening esterification of 9, 9-bis[4-(glycidyloxy)phenyl]fluorene (1) with acrylic acid was catalyzed by some onium salts such as quaternary ammonium and phosphonium salts. While the coupling reactions depend greatly on the kind of the onium salts, the reaction of 9, 9-bis[4-(glycidyloxy)phenyl]fluorene (1) with acrylic acid proceed most efficiently in the presence of a catalytic amount of tetrabutylphosphonium bromide at $110^{\circ}C$ with 90% yield. This reaction is a cleaner reaction that minimizes the use of reactants and the production of chemical wastes.

플로렌 구조를 가진 다양한 아크릴계 에폭시 고분자화합물 합성의 전구물질인 9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시)페닐]플루오렌 (3)에 대한 원자 효율적 (atom-efficient) 제조방법을 연구하였다. 사차 암모늄 또는 인산염을 촉매를 사용하여 9, 9'-비스[4-(글라이시딜옥시)페닐]플루오렌 (1)을 아크릴산과 개환 에스터화의 효율적 반응을 통하여 9, 9'-비스[4-(2'-하이드록시-3'-아크릴로일옥시프로폭시)페닐]플루오렌 (3)을 높은 수율로 얻을 수 있었다. 알킬 사차염의 종류와 반응조건이 반응에 미치는 영향에 대해 조사한 결과, 촉매의 종류가 반응에 큰 영향을 미치는 것으로 나타났다. 브롬화사부틸인 촉매(3 mol%) 존재 하에 플로레닐에폭사이드를 아크릴산과 $110^{\circ}C$에서 반응시켰을 때 원하는 생성물을 90% 수율로 얻을 수 있었다. 이 반응은 반응물질 사용량과 화학적 폐기물의 생성량을 최소화한 청정반응이다.

Keywords

References

  1. Li, C-J., and Trost, B. M., "Green Chemistry for Chemical Synthesis," Proc. Nat. Acad. Sci., 105(36), 13197-13202 (2008). https://doi.org/10.1073/pnas.0804348105
  2. Trost, B. M., "Atom Economy-a Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way," Angew. Chem. Int. Ed., 34(3), 259-281 (1995). https://doi.org/10.1002/anie.199502591
  3. Trost, B. M., "The Atom Economy: a Search for Synthetic Efficiency," Science, 254(5037), 1471-1477 (1991). https://doi.org/10.1126/science.1962206
  4. Sheldon, R. A., "Organic Synthesis-past, Present and Future," Chem. Ind. 23, 903-906 (1992).
  5. Wong, K.-T., Liao, Y.-L., Peng, Y.-C., Wang, C.-C., Lin, S.-Y., Yang, C.-H., Tseng, S.-M., Lee, G.-H., and Peng, S.-M., "A Novel Right-Angled Ligand that Forms Polymeric Metal-Organic Frameworks with Nanometer-Sized Square Cavities," Cryst. Growth Des., 5(2), 667-671 (2005). https://doi.org/10.1021/cg049822o
  6. Fournier, J.-H., Maris, T., and Wuest, J. D., "Molecular TecFournier, J.-H., Maris, T., and Wuest, J. D., "Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 9, 9'-Spirobifluorene," J. Org. Chem., 69(6), 1762-1775 (2004). https://doi.org/10.1021/jo0348118
  7. Fournier, J.-H., Maris, T., and Wuest, J. D., "Molecular Tectonics. Construction of Porous Hydrogen-Bonded Networks from Bisketals of Pentaerythritol," J. Org. Chem., 68(2), 240-246 (2003). https://doi.org/10.1021/jo026267t
  8. Smith, D. K., and Diederich, F., "Dendritic Hydrogen Bonding Receptors: Enantiomerically Pure Dendroclefts for the Selective Recognition of Monosaccharides," J. Chem. Soc., Chem. Commun., 22, 2501-2502 (1998).
  9. Sim, Y. S., Shim, J.-J., and Ra, C. S., "Synthesis of a Fluorene Carbonate from Fluorenyl Epoxide using Supercritical Carbon Dioxde," Clean Technol., 16(4), 239-244 (2010).
  10. Okada, S., "Curable Acrylic Resin Compositions with Good Light Resistance," JP. Patent No. 2004315744A (2004).
  11. Shida, M., Kondo, M., Shiota, H., Uematsu, T., and Tateno, I., "Photosensitive Resin Composition," JP. Patent No. 2011170075A (2011).
  12. Zhong, X., and Hsieh, Y., "Photosensitive Composition Containing Binder Containing 9, 9-diphenylfluorene Structure and Overcoat Manufactured from it for Color Filter," JP. Patent No. 2011090275A (2011).
  13. Ishii, K., and Yokoshima, M., "Thermal-transfer Recording Sheets with Heat-resistant Layer Containing Epoxy-acrylate Polymers," JP. Patent No. 05004463A (1993).
  14. Liu, F.,He, J.-w., Lin, Z.-m., Ling, J.-q., and Jia, D.-m., "Synthesis and Characterization of Dimethacrylate Monomer with High Molecular Weight for Root Canal Filling Materials," Molecules, 11, 953-958 (2006). https://doi.org/10.3390/11120953
  15. Dai, Z., Li, Y., Yang, S., Zhao, N., Zhang, X., and Xu, J., Eur. Polym. J. "Kinetics and Thermal Properties of Epoxy Resins Based on Bisphenol Fluorene Structure," Eur. Polym. J., 45, 1941-1948 (2009). https://doi.org/10.1016/j.eurpolymj.2009.04.012
  16. Xiong, Y., Liu, H., Ou, E., Zeng, X., Zhou, W., and Xu, W., "Preparation, Characterization, and Properties of Sodium Montmorillonite Clay/poly(styrene-butadiene-styrene) Containing Quaternary Ammonium Cations and Photoinitiator Nanocomposites via Ultraviolet Exposure," J. Appl. Polym. Sci., 118(2), 827-833 (2010).
  17. Calo, V., Nacci, A., Monopoli, A., and Fanizzi, A., "Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts," Org. Lett., 4(15), 2561-2563 (2002). https://doi.org/10.1021/ol026189w