DOI QR코드

DOI QR Code

Mineral Composition and Color Properties of Molten Clinker made from Blast Furnace Slag

고로(高爐)슬래그로 부터 제조(製造)된 용융(溶融)클링커의 광물조성(鑛物組成)과 색도특성(色度特性)

  • Chu, Yong-Sik (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Seo, Sung-Kwan (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Im, Du-Hyuk (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Song, Hun (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Jong-Kyu (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Seung-Ho (Green Ceramic Division, Korea Institute of Ceramic Engineering & Technology)
  • 추용식 (한국세라믹기술원 그린세라믹본부) ;
  • 서성관 (한국세라믹기술원 그린세라믹본부) ;
  • 임두혁 (한국세라믹기술원 그린세라믹본부) ;
  • 송훈 (한국세라믹기술원 그린세라믹본부) ;
  • 이종규 (한국세라믹기술원 그린세라믹본부) ;
  • 이승호 (한국세라믹기술원 그린세라믹본부)
  • Received : 2011.10.25
  • Accepted : 2011.12.09
  • Published : 2011.12.31

Abstract

Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620 for molten clinker fabrication. Color and mineral composition of molten clinker was investigated by XRD and colorimeter. It was found that the molten clinker contains alite and belite equivalent to OPC clinker mineral and shows higher whiteness value than that of OPC. Whiteness of the molten clinker decreased with LSF and SM. Also the whiteness value of the slag cement using molten clinker was higher than that of common slag cement.

용융클링커 제조용 혼합원료 중의 하나로 고로슬래그를 사용하였다. 고로슬래그를 사용한 혼합원료는 용융클링커 제조를 위해 1620에서 용융하였다. 냉각된 클링커는 XRD 패턴으로 클링커 광물의 생성여부를, 색도분석기로 색도를 분석하였다. 용융클링커는 XRD 분석을 통해 OPC 광물과 동등의 클링커 광물을 포함하고 있다는 것을 확인할 수 있었다. 용융시멘트는 OPC보다 백색도가 높아, 색상이 OPC보다 옅게 관찰되었다. 용융시멘트의 LSF 및 SM이 높아짐에 따라 백색도는 낮아졌다. 또한 슬래그를 용융시켜 제조한 시멘트 클링커는 고로 슬래그시멘트보다 백색도가 높았다.

Keywords

References

  1. 고경택 외 3인, 2011: 무시멘트 알칼리 활성 모르타르의 수축 및 내구성 평가, 한국자원리싸이클링학회, 20(3), pp. 40-47.
  2. 이승헌 외 10인, 2009 : 시멘트산업 중장기 수요예측 및 경쟁력 강화방안, 한국세라믹학회, pp. 72-79.
  3. Xinghua Fu et al., 2000: Studies on high-strength slag and fly ash compound cement, Cem. Concr. Res., 30, pp. 1239-1243. https://doi.org/10.1016/S0008-8846(00)00312-4
  4. L. Stevula, J. Madej, J. Kozankova and J. Madejová, 1994: Hydration products at the blastfurnace slag aggregatecement paste interface, Cem. Concr. Res., 24, pp. 413-423. https://doi.org/10.1016/0008-8846(94)90128-7
  5. J Hill, J.H Sharp, 2002: The mineralogy and microstructure of three composite cements with high replacement levels, Cem. Concr. Comp., 24, pp. 191-199. https://doi.org/10.1016/S0958-9465(01)00041-5
  6. 지식경제부 보도자료, 2007: 화력발전소 석탄재 재활용 길열려
  7. Yoshio Ono, 1995: Fundamental microscopy of portland cement clinker, Chichibu Onoda Cement corporation, pp. 12-15.
  8. T Stanek, P Sulovský, 2002: The influence of the alite polymorphism on the strength of the Portland cement, Cem. Concr. Res., 32, pp. 1169-1175. https://doi.org/10.1016/S0008-8846(02)00756-1
  9. M. Ichikawa and Y. Komukai, 1993: Effect of Burning Condition and Minor Components on the Color of Portland Cement Clinker, Cem. Concr. Res., 23, pp. 933-938. https://doi.org/10.1016/0008-8846(93)90047-D
  10. Frederick M Lea, 1970: The Chemistry of Cement and Concrete, Third edition, pp. 152-153.
  11. 日本セメント協會 編輯部, 1996: C&C エンサイクロペデア, 日本セメント協會, pp. 69-71.
  12. Donald H. Campbell, 1986: Microscopical examination and interpretation of portland cement and clinker, pp. 55-97.