DOI QR코드

DOI QR Code

Border-based HSFI Algorithm for Hiding Sensitive Frequent Itemsets

민감한 빈발항목집합을 숨기기 위한 경계기반 HSFI 알고리즘

  • Received : 2011.05.19
  • Accepted : 2011.09.02
  • Published : 2011.10.31

Abstract

This paper suggests the border based HSFI algorithm to hide sensitive frequent itemsets. Node formation of FP-Tree which is different from the previous one uses the border to minimize the impacts of nonsensitive frequent itemsets in hiding process, including the organization of sensitive and border information, and all transaction as well. As a result of applying HSFI algorithms, it is possible to be the example transaction database, by significantly reducing the lost items, it turns out that HSFI algorithm is more effective than the existing algorithm for maintaining the quality of more improved database.

민감한 정보 숨기기 알고리즘은 민감한 정보를 보호하기 위하여 트랜잭션 데이터베이스를 삭제한다. 데이터 변경은 삭제 접근 방법들 중 하나이다. 민감한 정보를 숨기는 이전 연구들은 결과 데이터베이스의 품질을 유지하기 위해 서로 다른 휴리스틱 알고리즘을 적용했다. 그러나 민감한 정보를 숨기는 과정에서 변경되는 항목집합에 대한 영향을 평가하거나 숨겨지는 항목을 감소시키는 연구들은 미흡하였다. 본 논문에서는 민감한 빈발 항목집합을 숨기기 위하여 경계기반의 HSFI(Hiding Sensitive Frequent Itemsets) 알고리즘을 제안한다. 본 알고리즘에서 FP-Tree의 노드 정보는 기존과는 다르게 빈발 항목집합 생성단계에서 트랜잭션 정보와 민감 정보, 경계 정보를 모두 구성하며, 숨기는 과정에서 비민감한 빈발 항목집합의 영향을 줄이기 위하여 경계를 사용하였다. 본 논문의 예시 트랜잭션 데이터베이스에 HSFI를 적용한 결과, 손실 항목을 크게 감소시킴으로써 기존 방법들에 비해 효과적임을 증명하였고, 보다 개선된 데이터베이스의 품질을 유지할 수가 있었다.

Keywords

References

  1. V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis, "State-of-the-Art in Privacy Preserving Data Mining," SIGMOD Record, 33(1), pp. 50-57, 2004. https://doi.org/10.1145/974121.974131
  2. J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns Without Candidate Generation: A Frequent-Pattern Tree Approach," Data Mining and Knowledge Discovery, Vol.8, pp. 53-87, 2004. https://doi.org/10.1023/B:DAMI.0000005258.31418.83
  3. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykos, "Disclosure Limitation of Sensitive Rules," Proc. of the IEEE workshop Knowledge and Data Eng. Exchange, pp. 45-52, 1999.
  4. E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino, "Hiding Association Rules by using Confidence and Support," Proc. of the 4th Information Hiding Workshop, pp. 369- 383, 2001.
  5. H. Mannila and H. Toivonen, "Levelwise Search and Borders of Theories in Knowledge Discovery," Data Mining and Knowledge Discovery, Vol.1, No.3, pp. 241-258, 1997. https://doi.org/10.1023/A:1009796218281
  6. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykos, "Disclosure Limitation of Sensitive Rules," Proc. of the IEEE workshop Knowledge and Data Eng. Exchange, pp. 45-52, 1999.
  7. Y. Saygin, V. S. Verykios, and A. K. Elmagarmid, "Privacy Preserving Association Rule Mining," Proc. of the IEEE workshop Research Issues in Data Eng., 2002.
  8. Shyue-Liang Wang, "Hiding Sensitive Predictive Association Rules," Systems, Man and Cybernetics, 2005 IEEE International Conference on Information Reuse and Integration, Vol.1, pp. 164-169, 2005.
  9. Yi-Hung Wu, Chai-Ming Chiang, and Arbee L. P. Chen, "Hiding Sensitive Association Rules with Limited Side Effects," IEEE Transactions on Knowledge and Data Engineering, Vol.19, Issue 1, pp. 29-42, 2007. https://doi.org/10.1109/TKDE.2007.250583
  10. V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni, "Association Rule Hiding," IEEE Trans. Knowledge and Data Eng., Vol.16, No.4, pp. 434-447, 2004. https://doi.org/10.1109/TKDE.2004.1269668
  11. R. Agrawal and R. Srikant, "Fast algorithms for mining association rules in large databases," Proc. of the 20th International Conference on Very Large Data Bases, pp. 487-499, 1994.
  12. R. Agrawal and R. Srikant, "Mining Sequential Patterns," Proc. of the 11th International Conference on Data Engineering(ICDE'95) , pp. 3-14, 1995.
  13. C. Clifton and D. Marks, "Security and Privacy Implications of Data Mining," Data Mining and Knowledge Discovery, Proc. of the ACM workshop Research Issues in Data Mining and Knowledge Discovery, pp. 15-19, 1996.
  14. http://www.almaden.ibm.com/cs/projects/iis/hdb/ Projects/data_mining/mining.shtml