DOI QR코드

DOI QR Code

A Study on the Fast Removement of Overlaps in Image Morphing Using Mass-Spring System

질량-스프링 시스템을 이용한 이미지 모핑의 빠른 겹침 제거 연구

  • Received : 2011.07.25
  • Accepted : 2011.09.23
  • Published : 2011.10.31

Abstract

A fast and stable deformation model is essential for realistic simulation of image morphing. In order to stabilize deformation, we used two internal thin plate mass-spring systems that compute the displacements of the x- and y-components of all nodes on the mesh. The deformation results are globally smoother and more stable due to the direction limitation of thin plate mass-spring systems. One-to-one deformation is one of the important issues in image morphing. We focus on fast removing overlaps in the process of deformation. To rapidly remove overlaps, the external forces are set automatically on four or eight neighboring nodes. The speed of removing overlaps is faster when external forces are set on four or eight neighbouring nodes than when on two neighbouring nodes.

이미지 모핑의 실제적인 시뮬레이션을 위해서는 빠르고 안정적인 이미지 변형모델이 필수적이다. 질량-스프링 시스템은 실시간 변형의 애니메이션 분야에서 널리 사용되고 있지만, 큰 변형이 요구되는 이미지모핑에서는 불안정한 특성을 보인다. 논문에서는 이미지 변형의 안정적인 결과를 얻기 위해, 메시상의 각노드의 x와 y성분 변위 값을 계산하는 얇은 막 질량-스프링 시스템을 내부적으로 사용한다. 얇은 막 질량-스프링 시스템의 방향 제한 때문에, 안정적이고 더 넓은 범위에서 부드럽게 이미지가 변형된 결과를 얻을수 있다. 일대일 변형은 이미지 모핑에서 중요한 분야 중의 하나이다. 본 논문에서는 이미지의 변형과정에서 발생하는 겹침을 빠르게 제거하는 방안에 중점을 둔다. 겹침을 빠르게 제거하기 위해, 겹침이 발생한 노드의 이웃 4개 또는 8개 노드에 외부 힘을 자동으로 부가하는 방안을 제안한다. 4개 또는 8개의 이웃 노드에 외부 힘을 부가하는 경우는 2개의 이웃 노드에 외부 힘을 부가하는 경우에 비해 겹침의 제거 속도가 크게 향상된다.

Keywords

References

  1. G. Wolberg, "Recent Advances in Image Morphing," IEEE in Proc. Int. Conf. Comput. Graph., pp. 64-71, 1996.
  2. DW. Choi and CJ. Hwang, "Image Morphing Using Mass-Spring System," The 2011 International Conference on Computer Graphics and Virtual Reality, in press, 2011.
  3. DW. Choi and CJ. Hwang, "A Fast Overlap Control in Image Morphing Using Mass- Spring System," The 4th International Conference on Image and Signal Processing, in press, 2011.
  4. G. Wolberg, Digital Image Warping. IEEE Computer Society Press: Los Alamitos, CA, 1990.
  5. T. Beier, and S. Neely, "Feature-based image metamorphosis," in Proc. SIGGRAPH, Vol. 26, pp.35-42, 1992.
  6. SY. Lee, KY. Chwa, J. Hahn, and SY. Shin, "Image Morphing Using Deformation Techniques," J . Vis. Comput. Anim., Vol.7, No.1, pp. 3-23, 1996. https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<3::AID-VIS131>3.0.CO;2-U
  7. SY. Lee, KY. Chwa, and SY. Shin, "Image Metamorphosis Using Snakes and Free-Form Deformations," Proc. SIGGRAPH'95, pp. 439-448, 1995.
  8. M. Alexa, D. Cohen-Or, and D. Levin, "As- Rigid-As-Possible Shape Interpolation," Proc. of ACM SIGGRAPH 2000, pp. 157-164, 2000.
  9. T. Igarash, T. Moscovich, and J. F. Hughes, "As-Rigid-As-Possible Shape Manipulation," ACM Trans. on Graphics 24, 3, pp.1134-1141, 2005. https://doi.org/10.1145/1073204.1073323
  10. S. Schaefer, T. McPhail, and J. Warren, "Image Deformation Using Moving Least Squares," Proc. of ACM SIGGRAPH 2006 , pp.533-540, 2006.
  11. D. Baraff, and A. Witkin, "Large Steps in Cloth Simulation," Proc. 25th Ann. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH'98), pp.43-54, 1998.
  12. X. Provot, "Deformation Constraints in a Spring-Mass Model to Describe Rigid Cloth Behavior," In Graphics Interface, pp.147-154, 1995.
  13. K. Kahler, J. Haber, and HP. Seidelm, "Geometry- Based Muscle Modeling for Facial Animation," Proc. Graphics Interface Conf., pp. 37-46. 2001.
  14. W. Mollemans, F. Schutyser, J. Cleynenbreugel, and P. Suetens, "Fast Soft Tissue Deformation with Tetrahedral Mass Spring Model for Maxillofacial Surgery Planning Systems," Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI '04), pp.371-379, 2004.
  15. S. Zhang, L. Gul, P. Huang, and J. Xu, "Real- Time Simulation of Deformable Soft Tissue Based on Mass-Spring and Medial Representation," Proc. First Int'l Workshop Computer Vision for Biomedical Image Applications (CVBIA'05), pp. 419-426, 2005.
  16. J. Brown, S. Sorkin, JC. Latombe, K. Montgomery, and M. Stephanides, "Algorithmic Tools for Real-Time Microsurgery Simulation," Medical Image Analysis, Vol.6, No.3, pp. 289-300, 2002. https://doi.org/10.1016/S1361-8415(02)00086-5
  17. FL. Bookstein, "Principal Warps: Thin-Plate Splines and the Decomposition of Deformations," IEEE Transactions On Pattern Analysis and Intelligence, Vol.11, No.6, pp. 567-585, 1989. https://doi.org/10.1109/34.24792
  18. N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun, "Image Warping By Radial Basis Functions: Application To Facial Expressions," CVGIP: Graphical Models and Image Processing., 56(2), pp. 161-172, 1994. https://doi.org/10.1006/cgip.1994.1015
  19. L. Cooper and S. Maddock, "Preventing Collapse Within Mass-Spring Damper Models of Deformable Objects," The 5th Int. Conf. in Central European Comput. Graphics and Vis., 1997.
  20. CCL. Wang, SSF. Smith, and MMF. Yuen, "Surface Flattening Based on Energy Model," Computer-Aided Design, 34, pp. 823-833, 2002. https://doi.org/10.1016/S0010-4485(01)00150-6
  21. J. Li, D. Zhang, G. Lu, Y. Deng, X. Wen, and Y. Sakaguti, "Flattening Triangulated Surfaces Using a Mass-Spring Model," Int.J Adv Manuf. Technol., 25, pp.108-117, 2005. https://doi.org/10.1007/s00170-003-1818-4
  22. B. Tiddeman, N. Duffy, and G. Rabey, "A General Method for Overlap Control in Image Warping," Computers and Graphics, Vol. 25, No.1, pp. 59-66, 2001. https://doi.org/10.1016/S0097-8493(00)00107-2
  23. YJ. Choi, M. Hong, MH. Choi, and MH. Kim, "Adaptive Surface-Deformable Model with Shape-Preserving spring," Computer Animation and Virtual Worlds, 16, pp. 69-83, 2005. https://doi.org/10.1002/cav.57
  24. Y. Bhasin, A. Liu. "Bounds for Damping that Guarantee Stability in Mass-Spring Systems," Medicine Meets Virtual Reality, 2006.
  25. GH. Meisters and C. Olech, "Locally one-to-one Mappings and a Classical Theorem on Schlicht Functions," Duke Mathematics Journal, 30, pp. 63-80, 1988.