Abstract
The speech recognition system works well in general indoor environment. However, the recognition performance is dramatically decreased when the system is used in the real environment because of the several noises. In this paper we proposed CSFN-CMVN to improve the recognition performance of the existing CSFN(Cepstral distance based SFN). The CSFN-CMVN method is a combined method of cepstral normalization with CSFN that normalizes silence features using cepstral euclidean distance to classify speech/silence for better performance. From the test results using Aurora 2.0 DB, we could find out that our proposed CSFN-CMVN improves about 7% of more average word accuracy in all the test sets comparing with the typical silence features normalization SFN-I. We can also get improved accuracy of 6% and 5% respectively in compared tests with the conventional SFN-II and CSFN, showing the effectiveness of our proposed method.
일반적인 음성인식 시스템은 보통 실내 환경에서는 잘 동작하지만 잡음이 존재하는 실제 환경에서는 여러 가지 잡음의 영향으로 그 성능이 급격히 떨어진다. 본 논문에서는 잡음환경에 강인한 음성인식을 위하여 훈련 환경과 실제 환경의 불일치를 줄이기 위한 방법으로 켑스트럼 거리기반 묵음특징 정규화(CSFN: Cepstral distance based SFN) 방법에 켑스트럼 정규화 방법(CMVN:cepstral mean and variance normalization)을 결합한 CSFN-CMVN 방법을 제안하였다. 이 방법은 켑스트럼 특징의 분포 특성의 차이를 나타내는 켑스트럼 유클리디언 거리를 결합하여 음성/묵음 분류에 사용하여 묵음특징을 정규화하는 CSFN 방법에 켑스트럼 정규화 방법을 결합하는 방법이다. Aurora 2.0 DB를 이용한 실험결과, 제안한 CSFN-CMVN은 기존의 대표적인 묵음특징 정규화 방법인 SFN-I 과 비교했을 때 모든 테스트 세트에 대한 평균 단어인식 정확도에서 약 7%의 인식률 향상을 가져옴을 확인하였다. 또한, 기존의 SFN-II, CSFN에 비해서도 약 6%, 5% 향상되었음을 확인 할 수 있어 제안한 방법의 유효성을 확인할 수 있었다.