DOI QR코드

DOI QR Code

Expression of pro-opiomelanocortin and agouti-related protein in the hypothalamus of caffeine-administered rats

  • Jeong, Joo-Yeon (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Ku, Bo-Mi (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Lee, Yeon-Kyung (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Ryu, Jin-Hyun (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Choi, Jung-Il (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kim, Joon-Soo (Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University, School of Medicine) ;
  • Cho, Yong-Woon (Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University, School of Medicine) ;
  • Roh, Gu-Seob (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kim, Hyun-Joon (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Cho, Gyeong-Jae (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Choi, Wan-Sung (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University) ;
  • Kang, Sang-Soo (Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University)
  • Received : 2010.11.04
  • Accepted : 2011.01.07
  • Published : 2011.09.30

Abstract

In the present study, we examined the effects of caffeine on food intake and body weight, and pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) expression in the hypothalamus. Rats were administered intraperitoneally with 100 mg/kg caffeine (a high, non-toxic dose) or saline during the light phase. Intraperitoneal administration of caffeine induced a significant reduction in food intake and body weight 12 hr after treatment. In addition, POMC expression was significantly increased and AgRP expression was decreased in the arcuate nucleus (Arc) after caffeine treatment. These results demonstrate that administration of caffeine up-regulates POMC expression and down-regulates AgRP expression in the Arc, suggesting that the activation of the hypothalamic POMC neurons and inhibition of the AgRP neurons might play a role in the regulation of food intake and body weight by caffeine.

Keywords

References

  1. Adan RA, Oosterom J, Toonen RF, Kraan MV, Burbach JP, Gispen WH. 1997. Molecular pharmacology of neural melanocortin receptors. Receptors Channels. 5(3-4):215- 223.
  2. Astrup A, Breum L, Toubro S, Hein P, Quaade F. 1992. The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double blind trial. Int J Obes Relat Metab Disord. 16(4):269-277.
  3. Belgardt BF, Okamura T, Bruning JC. 2009. Hormone and glucose signaling in POMC and AgRP neurons. J Physiol. 587(Pt 22):5305-5314. https://doi.org/10.1113/jphysiol.2009.179192
  4. Bouret SG, Draper SJ, Simerly RB. 2004. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 24(11):2797-2805. https://doi.org/10.1523/JNEUROSCI.5369-03.2004
  5. Broberger C, Hokfelt T. 2001. Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiol Behav. 74(4-5):669-682. https://doi.org/10.1016/S0031-9384(01)00611-4
  6. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. 2000. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet. 26(1):97-102. https://doi.org/10.1038/79254
  7. Cone RD. 1999. The central melanocortin system and energy homeostasis. Trends Endocrinol Metab. 10(6):211-216. https://doi.org/10.1016/S1043-2760(99)00153-8
  8. Cone RD. 2005. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 8(5):571-578. https://doi.org/10.1038/nn1455
  9. Cummings DE, Schwartz MW. 2000. Melanocortins and body weight: a tale of two receptors. Nat Genet. 26:8-9. https://doi.org/10.1038/79223
  10. Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. 2006. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol. 498(5):667-689. https://doi.org/10.1002/cne.21084
  11. Diepvens K, Westerterp KR, Westerterp-Plantenga MS. 2007. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol. 292(1):R77-R85. https://doi.org/10.1152/ajpregu.00832.2005
  12. Dulloo AG. 1993. Ephedrine, xanthines and prostaglandininhibitors: actions and interactions in the stimulation of thermogenesis. Int J Obes Relat Metab Disord. 17 Suppl 1:S35-S40.
  13. Greenberg JA, Boozer CN, Geliebter A. 2006. Coffee, diabetes, and weight control. Am J Clin Nutr. 84:682-693. https://doi.org/10.1093/ajcn/84.4.682
  14. Haskell-Luevano C, Monck EK. 2001. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept. 99(1):1-7. https://doi.org/10.1016/S0167-0115(01)00234-8
  15. Hillebrand JJ, de Wied D, Adan RA. 2002. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides. 23(12):2283-2306. https://doi.org/10.1016/S0196-9781(02)00269-3
  16. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 88(1):131-141. https://doi.org/10.1016/S0092-8674(00)81865-6
  17. Jegou S, Delbende C, Tranchand-Bunel D, Leroux P, Vaudry H. 1987. alpha-Melanocyte-stimulating hormone (alpha- MSH) release from perifused rat hypothalamic slices. Brain Res. 413(2):259-266. https://doi.org/10.1016/0006-8993(87)91016-X
  18. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. 2003. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol. 457(3):213-235. https://doi.org/10.1002/cne.10454
  19. Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS. 2004. Effets of green tea on weight maintenance after body-weigh loss. Br J Nutr. 91(3):431-437. https://doi.org/10.1079/BJN20041061
  20. Lage R, Dieguez C, Lopez M. 2006. Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci Lett. 410(1):47-51. https://doi.org/10.1016/j.neulet.2006.09.064
  21. Lee CH, Choi JH, Hwang IK, Yoo KY, Li H, Park OK, Yan B, Shin HC, Won MH. 2009. Immunohistochemical changes in orexigenic and anorexigenic neuropeptides in the rat hypothalamus after capsaicin administration. J Vet Med Sci. 71(10):1337-1342. https://doi.org/10.1292/jvms.001337
  22. Lenard NR, Berthoud HR. 2008. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring). Suppl 3:S11-S22.
  23. Mendez M, Morales-Mulia M, Perez-Luna JM. 2008. Ethanol-induced changes in proenkephalin mRNA expression in the rat nigrostriatal pathway. J Mol Neurosci. 34(3):225-234. https://doi.org/10.1007/s12031-008-9039-9
  24. Mounien L, Bizet P, Boutelet I, Vaudry H, Jegou S. 2005. Expression of melanocortin MC3 and MC4 receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus. Neuroendocrinology. 82(3-4):164-170. https://doi.org/10.1159/000091737
  25. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. 1994. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. 8(10):1298-1308. https://doi.org/10.1210/me.8.10.1298
  26. Murphy JA, Deurveilher S, Semba K. 2003. Stimulant doses of caffeine induce c-Fos activation in orexin/hypocretincontaining neurons in rat. Neuroscience. 121:269-275. https://doi.org/10.1016/S0306-4522(03)00461-5
  27. Ofluoglu E, Pasaoglu H, Pasaoglu A. 2009. The effects of caffeine on L-arginine metabolism in the brain of rats. Neurochem Res. 34(3):395-399. https://doi.org/10.1007/s11064-008-9790-x
  28. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. 1997. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 278:135-138. https://doi.org/10.1126/science.278.5335.135
  29. Pettenuzzo LF, Noschang C, von Pozzer Toigo E, Fachin A, Vendite D, Dalmaz C. 2008. Effects of chronic administration of caffeine and stress on feeding behavior of rats. Physiol Behav. 95(3):295-301. https://doi.org/10.1016/j.physbeh.2008.06.003
  30. Pritchard LE, Turnbull AV, White A. 2002. Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol. 172(3):411-421. https://doi.org/10.1677/joe.0.1720411
  31. Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR. 1998. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology. 139(10):4428-4431. https://doi.org/10.1210/en.139.10.4428
  32. SchwartzMW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. 2000. Central nervous system control of food intake. Nature. 404(6778):661-671. https://doi.org/10.1038/35007534
  33. Simpson KA, Martin NM, Bloom SR. 2009. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol. 53(2):120-128. https://doi.org/10.1590/S0004-27302009000200002
  34. Singewald N, Salchner P, Sharp T. 2003. Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry. 53(4):275-283. https://doi.org/10.1016/S0006-3223(02)01574-3
  35. Svenningsson P, Nomikos GG, Fredholm BB. 1999. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci. 19(10):4011-4022.
  36. Westerterp-Plantenga MS. 2010. Green tea catechins, caffeine and body-weight regulation. Physiol Behav. 100(1):42-46. https://doi.org/10.1016/j.physbeh.2010.02.005
  37. Wirth MM, Giraudo SQ. 2000. Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides. 21:1369-1375. https://doi.org/10.1016/S0196-9781(00)00280-1