DOI QR코드

DOI QR Code

Clinical Significance of Electrolyte Imbalance in Pediatric Urinary Tract Infection

요로감염과 동반된 전해질 불균형의 임상적 의의

  • Cho, Sea-Eun (Department of Pediatrics, Guro Hospital, Korea University) ;
  • Choi, Lim (Department of Pediatrics, Guro Hospital, Korea University) ;
  • Yim, Hyung-Eun (Department of Pediatrics, Guro Hospital, Korea University) ;
  • Yoo, Kee-Hwan (Department of Pediatrics, Guro Hospital, Korea University) ;
  • Hong, Young-Sook (Department of Pediatrics, Guro Hospital, Korea University) ;
  • Lee, Joo-Won (Department of Pediatrics, Guro Hospital, Korea University)
  • 조세은 (고려대학교 의과대학 소아과학교실) ;
  • 최림 (고려대학교 의과대학 소아과학교실) ;
  • 임형은 (고려대학교 의과대학 소아과학교실) ;
  • 유기환 (고려대학교 의과대학 소아과학교실) ;
  • 홍영숙 (고려대학교 의과대학 소아과학교실) ;
  • 이주원 (고려대학교 의과대학 소아과학교실)
  • Received : 2011.03.15
  • Accepted : 2011.04.20
  • Published : 2011.04.30

Abstract

Purpose: Some hormonal and electrolyte abnormalities have been reported in pediatric patients with urinary tract infection (UTI). This study aimed to investigate the relationships between the imbalance of electrolytes and the severity of infection and associated urologic anomalies in children with febrile UTI. Methods: We retrospectively reviewed 267 patients with febrile UTI who were admitted to Korea University Guro Hospital during the period from January, 2007 until February, 2010. According to the presence of hyponatremia or hyperkalemia, clinical parameters and associated renal anomalies, such as hydronephrosis, cortical defects and vesicoureteral reflux, were compared. Results: 42.7% of all patients had decreased concentration of serum sodium. In patients with decreased concentration of serum sodium, cortical defects were significantly increased compared to normal patients (40.4% vs. 14.4%, P <0.05). White blood cell (WBC) counts ($15,721{\pm}6,553/uL$ vs. $12,885{\pm}5,367/uL$, P <0.05), C-reactive protein (CRP) ($61.8{\pm}56.1$ mg/L, vs. $29.9{\pm}39.8$ mg/L, P <0.05), and erythrocyte sedimentation rate (ESR) ($43.9{\pm}34.3$ mm/hr vs. $27.4{\pm}26.8$ mm/hr, P <0.05) in peripheral blood showed significant increases in the group with decreased concentration of serum sodium. Duration of fever, presence of gastrointestinal symptom, the incidence of hydronephrosis and vesicoureteral reflux did not differ between the two groups. None of the patients had significant hyperkalemia. Conclusion : We suggest that decreased concentration of serum sodium in febrile UTI might be a helpful marker for leukocytosis and increased CRP and ESR in peripheral blood, and acute pyelonephritis.

목 적: 소아 요로 감염은 발열이 있는 환아의 약 5%를 차지하는 흔한 질환으로 감염 그 자체 뿐 아니라 선천적 요로 기형과 관계가 있을 수 있고, 급성기에는 패혈증 등을 유발할 수 있으며, 신 반흔, 고혈압, 신부전 등의 합병증으로 이어질 수 있다. 본 연구에서는 발열성 요로감염 환아에서 전해질의 불균형이 요로 감염 중증도의 예측인자로서 의미가 있는지에 대해 알아보고자 하였다. 방 법: 2007년 1월부터 2010년 2월까지 고려대학교 구로병원에서 발열성 요로 감염으로 입원치료를 받은 환아 676명 중 방광 요관 역류와 수신증 외의 다른 신장 기형이 없으며, 요 배양 검사상 의미 있는 세균 배양이 되고, 입원 기간 중 복부 초음파와 신 스캔, 배뇨 중 방광 요도 조영술을 시행한 267명을 후향적으로 분석하였다. 발열성 요로 감염 환아에서 전해질 불균형의 동반 여부에 따라 발열기간, 위장관계 증상의 유무, 말초 혈액 백혈구 수, C-반응성 단백, 적혈구 침강 속도, 수신증, 방광 요관 역류유무를 조사하였다. 결 과: 전체 환아 중 혈중 나트륨이 정상보다 감소한 환아는 42.7% (n=114)로 혈중 나트륨이 정상인 환아군에 비하여 말초 혈액 백혈구 수($15,721{\pm}6,554/uL$ Vs. $12,884{\pm}5,367/uL$, P <0.05), C-반응성 단백($61.8{\pm}56.1$ mg/L Vs. $28.9{\pm}39.8$ mg/L, P <0.05), 적혈구 침강 속도 ($43.9{\pm}34.3$ mm/hr Vs $27.4{\pm}26.8$ mm/hr, P <0.05)가 유의하게 증가하였으며, 핵 의학 신 스캔 검사상 혈중 나트륨이 정상보다 감소한 환아에서 초기 신 결손이 유의하게 증가하였다(40.4% Vs 14.3%, P <0.05). 그 외 연령, 발열기간, 위장관계 증상의 유무, 수신증의 유무, 방광 요관 역류의 유무에는 양 군간 차이를 보이지 않았다. 또한 전체 환아에서 의미있는 고칼륨혈증이 동반된 환아는 없었다. 결 론: 소아의 발열성 요로 감염에서 혈중 나트륨이 정상보다 감소한 환아의 경우 말초 혈액의 염증성 표지자 및 급성 신우신염이 유의하게 증가하며 요로 감염의 급성기 중증도와 관계가 있음을 제시하는 바이다.

Keywords

References

  1. Cleper R, Krause I, Eisenstein B, Davidovits M. Prevalence of vesicoureteral reflux in neonatal urinary tract infection. Clin Pediatr 2004;43:619-25. https://doi.org/10.1177/000992280404300706
  2. Koh JY, Koo JW. Necessity of 99mTc- Dimercaptosuccinic acid scan in infants with low grade vesicoureteral reflux. Korean J Pediatr 2006;49:648-52. https://doi.org/10.3345/kjp.2006.49.6.648
  3. Shah G, Upadhyay J. Controversies in the diagnosis and management of urinary tract infections in children. Pediatr Drugs 2005;7: 339-46. https://doi.org/10.2165/00148581-200507060-00002
  4. Moorthy I, Easty M, Mchugh K, Ridout D, Biassoni L, Gordon I. The presence of vesicoureteric reflux does not identify a population at risk for renal scarring following a first urinary tract infection. Arch Dis Child 2005;90:733-6. https://doi.org/10.1136/adc.2004.057604
  5. Baily RR. End-stage reflux nephropathy. Nephron 1981;27:302-6. https://doi.org/10.1159/000182075
  6. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006;86:747-803. https://doi.org/10.1152/physrev.00036.2005
  7. Choi J, Hahn H, Park YS, You HW. A Case of Transient Pseudohypoaldosteronism Secodary to Ureteropelvic Junction Obstruction. Korean J Pediatr 2004;8:91-5.
  8. Bogdanovic R, Stajic N, Putnik J, Paripovic A. Transient type 1 peudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol 2009; 24:2167-75. https://doi.org/10.1007/s00467-009-1285-8
  9. Melzi ML, Guez S, Sersale G, Terzi F, Secco E, Marra G, et al. Assael BM. Acute pyelonephritis as a cause of hyponatremia/hyperkalemia in young infants with urinary tract malformations. Pediatr Infect Dis J 1995;14:56-9. https://doi.org/10.1097/00006454-199501000-00012
  10. Pesce MA. Reference ranges for laboratory tests and procedures. In: Kliegman RM, Behrman RE, Jenson HB, Stanton BF. Nelson Textbook of Pediatrics. 18th ed. Philadelphia: Saunders, an imprint of Elsevier Inc., 2007:2944-9.
  11. Jodal U. The natural history of bacteriuria in childhood. Infect Dis Clin North Am 1987; 1:713-29.
  12. Winberg J, Bollgren I, Kallenius G, Mollby R, Svenson SB. Clinical pyelonephritis and focal renal scarring. A selected review of pathogenesis, Prevention and prognosis. Pediatr Clin North Am 1982;29:801-14. https://doi.org/10.1016/S0031-3955(16)34213-4
  13. RosenbergAR, Rossleigh MA, Brydon MP, Bass SJ, Leighton DM, Farnsworth RH. Evaluation of acute urinary tract infection in children by dimercaptosuccinic acid scintigraphy : a prospective study. J Urol 1992; 148:1746-9. https://doi.org/10.1016/S0022-5347(17)37019-2
  14. Jakobsson B, Nolstedt L, Svensson L, Soderlundh S, Berg U. 99m Technetium-dimercaptosuccinic acid scan in the diagnosis of acute pyelonephritis in children : relation to clinical and radiological findings. Pediatr Nephrol 1992;6:328-34. https://doi.org/10.1007/BF00869725
  15. Stokland E, Hellstrom M, Jacobsson B, Jodal U, Lundgren P, Sixt R, Early, 99m Tcdimercaptosuccinic acid (DMSA) scintigraphy in symptomatic first-time urinary tract infection. Acta Peadiatr 1996;85:430-6. https://doi.org/10.1111/j.1651-2227.1996.tb14055.x
  16. Hwang SJ, Park EA, Seo JW, Lee SJ, Lee SW. Diagnostic value of 99m Tc-DMSA renal scan for early diagnosis of acute pyelonephritis in children with febrile urinary tract infection. J Korean Pediatr Soc 1996; 39:1586-93.
  17. Jakobsson B, Berg U, Svensson L. Renal scarring after acute pyelonephritis. Arch Dis Child 1996;70:111-5.
  18. Benador D, Benador N, Slosman D, Mermillod B, Girardin E. Are younger children at highest risk of renal sequelae after pyelonephritis? Lancet 1997;349:17-9. https://doi.org/10.1016/S0140-6736(96)06126-0
  19. Dick PT, Feldman W. Routine diagnostic imaging for childhood urinary tract infections: a systemic overview. J Pediatr 1996; 128:15-22. https://doi.org/10.1016/S0022-3476(96)70422-5
  20. Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr 1983;103:375-80. https://doi.org/10.1016/S0022-3476(83)80406-5
  21. Rodriguez-Soriano J. Tubular disorders of electrolyte regulation. In: Avner ED, Harmon WE, Niaudet P. Pediatric Nephrology. 5th ed. Baltimore: Lippincott Williams & Wilkins, 2004:729-56.
  22. Heijden AJVD, Versteegh FGA, Wolff ED, Sukhai RN, Scholtmeijer RJ. Acute tubular dysfunction in infants with obstructive uropathy. Acta Paediatr Scand 1985;74:589-94. https://doi.org/10.1111/j.1651-2227.1985.tb11035.x
  23. Marra G, Goj V, Claris-Appiani A, Dell'Agnola CA, Tirelli SA, Tadini B, et al. Persistent tubular resistance to aldosterone in infants with congenital hydronephrosis corrected neonatally. J Pediatr 1987;110:868-72. https://doi.org/10.1016/S0022-3476(87)80398-0
  24. Vaid YN, Lebowitz RL. Urosepsis in infants with vesicoureteral reflux masquerading as the salt-losing type of congenital adrenal hyperplasia. Pediatr Radiol 1989;19:548-50. https://doi.org/10.1007/BF02389571
  25. Klahr S. Obstructive nephropathy. Intern Med 2000;39:355-61. https://doi.org/10.2169/internalmedicine.39.355
  26. Furness PD 3rd, Maizels M, Han SW, Kohn RA, Cheng E. Elevated bladder urine concentration of transforming growth factor-$\beta$1 correlates with upper urinary tract obstruction in children. J Urol 1999;162: 1033-6. https://doi.org/10.1016/S0022-5347(01)68056-X
  27. Husted RF, Matsushita K, Stokes JB. Induction of resistance to mineralocorticoid hormone in cultured inner medullary collecting duct cells by TGF-beta 1. Am J Physiol Renal Physiol 1994;267:767-75. https://doi.org/10.1152/ajprenal.1994.267.5.F767
  28. Bulchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves - A case report and review of the literature. Eur J pediatr Surg 2001; 11:277-9. https://doi.org/10.1055/s-2001-17151
  29. Rodrí guez-Soriano J, Vallo A, Quintela MJ, Oliveros R, Ubetagoyena M. Normokalaemic pseudohypoaldosteronism is present in children with acute pyelonephritis. Acta Paediatr 1992;81:402-6. https://doi.org/10.1111/j.1651-2227.1992.tb12258.x
  30. Gerigk M, Glanzmann R, Rascer W, Gnehm HE. Hyponatraemia and hyperkalaemia in acute pyelonephritis without urinary tract anomalies. Eur J Pediatr 1995;154:582-4. https://doi.org/10.1007/BF02074840
  31. Wang YM. Pseudohypoaldosteronism with pyloric stenosis-a patient report. J Pediatr Endocrinol Metab 1997;10:429-31.
  32. Maruyama K, Watanabe H, Onigata K. Reversible secondary pseudohypoaldosteronism due to pyelonephritis. Pediatr Nephrol 2002;17:1069-70. https://doi.org/10.1007/s00467-002-0993-0
  33. Jonasson H, Basu S, Andersson B, Kindahl H. Renal excretion of prostaglandin metabolites, arginine vasopressin, and sodium during endotoxin and endogenous pyrogen induced fever in the goat. Acta Physiol Scand 1984;120:529-36. https://doi.org/10.1111/j.1748-1716.1984.tb07417.x
  34. Rugo HS, O'Hanley P, Bishop AG, Pearce MK, Abrams JS, Howard M, et al. Local cytokine production in a murine model of Escherichia coli pyelonephritis. J Clin Invest 1992;89:1032-9. https://doi.org/10.1172/JCI115644
  35. Sugiura M, Inagami T, Kon V. Endotoxin stimulates endothelin-release in vivo and in vitro as determined by radioimmunoassay. Biochem Biophys Res Commun 1989;161: 1220-7. https://doi.org/10.1016/0006-291X(89)91372-7
  36. Caverzasio J, Rizzoli R, Dayer JM, Bonjour JP. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin- induced natriuresis. Am J Physiol 1987;252:F943-6.
  37. Tulassay T, Miltenyi M, Dobos M. Alteration of urinary carbon dioxide tension, electrolyte handling and low molecular weight protein excretion in acute pyelonephritis. Acta Paediatr Scand 1986;75:415-9. https://doi.org/10.1111/j.1651-2227.1986.tb10223.x
  38. Kuhnle U, Guariso G, Sonega M, Hinkel K, Hubl W, Armanini D. Transient pseudohypoaldosteronism in obstructive renal disease with transient reduction of lymphocytic aldosteron receptors. Horm Res 1993;39: 152-5. https://doi.org/10.1159/000182716
  39. Levin TL, Abramson S, Burbige K, Connor J, Ruzal-Shapiro C, Berdon W. Salt-losing nephropathy simulating congenital adrenal hyperplasia in infant with obstructive uropathy and/or vesicoureteral reflux-value of ultrasonography in diagnosis. Pediatr Radiol 1991;21:413-5. https://doi.org/10.1007/BF02026675
  40. Al-Dahhan J, Haycock JB, Chantler C, Stimmler L. Sodium homeostasis in term and preterm neonates: I. Renal aspects. Arch Dis Child 1983;58:335-42. https://doi.org/10.1136/adc.58.5.335