공면 점을 포함한 원형 특징의 3차원 자세 및 위치 추정

3D Pose Estimation of a Circular Feature With a Coplanar Point

  • 김헌희 (한국해양대학교 제어계측공학과) ;
  • 박광현 (광운대학교 로봇학부) ;
  • 하윤수 (한국해양대학교 IT공학부)
  • 투고 : 2011.04.22
  • 심사 : 2011.08.22
  • 발행 : 2011.09.25

초록

본 논문은 3차원 공간의 원형 물체에 대한 자세 및 위치 추정 문제를 다룬다. 원형 특징은 실세계의 다양한 물체들로부터 관찰될 수 있으며, 비전 기반의 물체 식별 및 위치 인식을 위한 주요한 단서를 제공한다. 일반적으로 3차원 공간상의 원형 특징은 카메라에 의해 투영될 때 원근 변화에 따라 투영된 곡선 정보로부터 원형 특징에 대한 완전한 3차원 자세 및 위치 파라미터를 결정하는 것이 어렵다. 따라서 본 논문은 공면 점(共面鮎)을 활용한 원형 특징의 3차원 자세/위치 추정 방법을 제안한다. 본 논문은 우선 원형 특징과 공면 점에 대한 기하학적 변환 관계를 사영 공간 및 3차원 공간에서 해석하고, 이를 토대로 3차원 자세 및 위치 파라미터의 추정 절차를 기술한다. 제안된 방법은 수치 예제를 통해 검증되고, 정확도 및 민감도 분석을 위한 실험을 통해 평가된다.

This paper deals with a 3D-pose (orientation and position) estimation problem of a circular object in 3D-space. Circular features can be found with many objects in real world, and provide crucial cues in vision-based object recognition and location. In general, as a circular feature in 3D space is perspectively projected when imaged by a camera, it is difficult to recover fully three-dimensional orientation and position parameters from the projected curve information. This paper therefore proposes a 3D pose estimation method of a circular feature using a coplanar point. We first interpret a circular feature with a coplanar point in both the projective space and 3D space. A procedure for estimating 3D orientation/position parameters is then described. The proposed method is verified by a numerical example, and evaluated by a series of experiments for analyzing accuracy and sensitivity.

키워드

참고문헌

  1. 이종실, 이응혁, 김인영, 김선일, "기하학적 해석을 이용한 비전 기반의 장애물 검출", 대한전자공학회논문지, 43(3), 99-106쪽, 2006.
  2. 유성구, 정길도, "단일단일 영상과 거리센서를 이용한 SLAM 시스템 구현", 대한전자공학회, 전자공학회논문지-SC, 45(6), 149-156쪽, 2008.
  3. 심귀보, 오승욱, "동적 물체에 대한 로봇 매니퓰레이터의 Visual Servoing", 대한전자공학회, 전자공학회논문지-B, 33(1), 15-24쪽, 1996.
  4. E. Klingbeil, B. Carpenter, O. Russakovsky, and A. Y. Ng, "Autonomous operation of novel elevators for robot navigation," 2010 IEEE International Conference on Robotics and Automation, pp. 751-758, 2010.
  5. L. Wenjing, G. Bebis, and N. G. Bourbakis, "3-D Object Recognition Using 2-D Views," IEEE Transactions on Image Processing, vol. 17, pp.2236-2255, 2008. https://doi.org/10.1109/TIP.2008.2003404
  6. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
  7. H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features," in Proceedings of the ninth European Conference on Computer Vision, 2006.
  8. K. S. Mikolajczyk, C., "A performance evaluation of local descriptors," IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 27, pp.1615-1630, 2005.
  9. T. Tuytelaars and K. Mikolajczyk, "Local Invariant Feature Detectors - Survey," Foundations and Trends in Computer Graphics and Vision, vol. 3, pp.1-110, 2008.
  10. R. Safaee-Rad, I. Tchoukanov, K. C. Smith, and B. Benhabib, "Three-dimensional location estimation of circular features for machine vision," IEEE Transactions on Robotics and Automation, vol. 8, pp. 624-640, 1992. https://doi.org/10.1109/70.163786
  11. K. Kanatani and W. Liu, "3D Interpretation of Conics and Orthogonality," CVGIP: Image Understanding, vol. 58, pp. 286-301, 1993. https://doi.org/10.1006/ciun.1993.1043
  12. Y. C. Shiu and S. Ahmad, "3D location of circular and spherical features by monocular model-based vision," in IEEE International Conference on Systems, Man and Cybernetics, vol.2 pp. 576-581, 1989.
  13. R. Safaee-Rad, K. C. Smith, B. Benhabib, and I. Tchoukanov, "An analytical method for the 3D-location estimation of circular features for an active-vision system," in IEEE International Conferenceon Systems, Man and Cybernetics, pp. 215-220, 1990.
  14. D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, "Invariant descriptors for 3D object recognition and pose," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 971-991, 1991. https://doi.org/10.1109/34.99233
  15. R. Safaee-Rad, K. C. Smith, B. Benhabib, and I. Tchoukanov, "Constraints on quadratic curves under perspective projection," in IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 57-62, 1991.
  16. S. D. Ma, "Conics-based stereo, motion estimation, and pose determination," International Journal of Computer Vision, vol. 10, pp. 7-25, 1993. https://doi.org/10.1007/BF01440844
  17. D. He and B. Benhabib, "Solving the orientation -duality problem for a circular feature in motion," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 28, pp. 506-515, 1998. https://doi.org/10.1109/3468.686712
  18. Z. Chen and J.-B, Huang, "A vision-based method for the circle pose determination with a direct geometric interpretation," IEEE Transactions on Robotics and Automation, vol. 15, pp. 1135-1140, 1999. https://doi.org/10.1109/70.817678
  19. J.-S. Kim, P. Gurdjos, and I.-S. Kweon, "Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 637-642, 2005. https://doi.org/10.1109/TPAMI.2005.80
  20. M. P. Kumar, C. V. Jawahar, and P. J. Narayanan, "Geometric Structure Computation from Conics," Indian Conference on Computer Vision, Graphics, and Image Processing, 2004.
  21. H. H. S. Ip and Y. Chen, "Planar rectification by solving the intersection of two circles under 2D homography," Pattern Recognition, vol. 38, pp. 1117-1120, 2005. https://doi.org/10.1016/j.patcog.2004.12.004
  22. C. Conomis, "Conics-Based Homography Estimation from Invariant Points and Pole-Polar Relationships," The 3rd International Symposium on 3D Data Processing, Visualization, and Transmission, 2006.
  23. J. Wright, A. Wagner, R. Shankar, and M. Yi, "Homography from Coplanar Ellipses with Application to Forensic Blood Splatter Reconstruction," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1250-1257, 2006.
  24. M. I. A. Lourakis, "Plane metric rectification from a single view of multiple coplanar circles," in 2009 16th IEEE International Conference on Image Processing(ICIP), pp. 509-512, 2009.