DOI QR코드

DOI QR Code

Tribological Properties of Tungsten Oxide Nanorods

산화 텅스텐 나노막대의 트라이볼로지 특성

  • Kim, Dae-Hyun (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Hahn, Jun-Hee (Korea Research Institute of Standards and Science) ;
  • Song, Jae-Yong (Korea Research Institute of Standards and Science) ;
  • Ahn, Hyo-Sok (School of International Fusion, Seoul National University of Science and Technology)
  • 김대현 (서울과학기술대학교 NID융합기술대학원) ;
  • 한준희 (한국표준과학연구원) ;
  • 송재용 (한국표준과학연구원) ;
  • 안효석 (서울과학기술대학교 국제융합학부)
  • Received : 2011.09.15
  • Accepted : 2011.11.05
  • Published : 2011.12.31

Abstract

Friction and wear behavior of tungsten oxide nanorods (TONs) was investigated using friction force microscopy(FFM) employing colloidal probes instead of conventional sharp tips. Vertically well-ordered TONs with 40 nm diameter, 130 nm length and 100 nm pitch width were synthesized on an anodic aluminium oxide substrate using two step electrochemical anodizing processes. The colloidal probe (diameter 20 ${\mu}m$) attached at the free end of tipless cantilever was oscillated(scanned) against a stationary surface of vertically aligned TONs with various scan speeds (1.2 ${\mu}m/s$, 3.0 ${\mu}m/s$ and 6.0 ${\mu}m/s$) and sliding cycles (100, 200 and 400) under normal load of 800 nN. The friction force and wear depth decreased with the increase of the scan speed. Plastically deformed thin layers were formed and sparsely deposited on the worn nonorod surface. The lower wear rate of the TONs with the longer oscillating cycles was attributed to the decreased real contact pressure due to the increase of real contact area between the colloidal probe and the TONs.

Keywords

References

  1. J. Y. Chun and J. W. Lee, "Various Synthesis Methods for One-dimensional Semiconductor Nanowires/Nanorods and their Application in Photovoltaic Devices", European Journal of Inorganic Chemistry, pp. 4251-4263, 2010.
  2. C. S. Blackman, X. Correig, V. Katko, A. Mozalev, I. P. Parkin, R. Alcubilla and T. Trifonov, "Templated Growth of Tungsten Oxide Micro/Nanostructures using Aerosol Assisted Chemical Vapour Deposition", Materials Letters, Vol. 62, pp. 4582-4584, 2008. https://doi.org/10.1016/j.matlet.2008.08.027
  3. S. H. Park, J. Y. Song, H. M. Park and H. Yu, "Template- assisted Growth of Tungsten Oxide Nanorods on Substrates and Their Electrochemical Properties", Materials Research Society, Vol. 1258, 2010.
  4. X. Shen, G. Wang and D. Wexler, "Large-scale Synthesis and Gas Sensing Application of Vertically Aligned and Double-sided Tungsten Oxide Nanorod Arrays", Sensors and Actuators B, Vol. 143, pp. 325-332, 2009. https://doi.org/10.1016/j.snb.2009.09.015
  5. C. Ascoli, F. Dinelli, C. Frediani, D. Petracchi, M. Salerno, M. Labardi, M. Allegrini and F. Fuso, "Normal and Lateral Forces in Scanning Force Microscopy", Journal of Vacuum Science Technology B, Vol. 12, No. 3, pp. 1642-1645, 1994. https://doi.org/10.1116/1.587251
  6. L. Y. Lin, J. M. Seo, M. C. Jeong, K. J. Koo, D. E. Kim and J. M. Myoung, "Wear Rate of Vertically Grown ZnO Nanowires Sliding Against Steel Micro-sphere", Materials Science and Engineering A, 460-461, pp. 370-376, 2007. https://doi.org/10.1016/j.msea.2007.02.110
  7. E. S. Yoon, S. H. Yang, H. G. Han and H. S. Kong, "An Experimental Study on the Adhesion at a Nanocontact", Wear, Vol. 254, pp. 974-980, 2003. https://doi.org/10.1016/S0043-1648(03)00302-8
  8. D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi and S. Valeri, "AFM Investigation of Tribological Properties of Nano-patterned Silicon Surface", Wear, Vol 265, pp. 577-582, 2008. https://doi.org/10.1016/j.wear.2007.12.010
  9. B. Bhushan and K. J. Kwak, "Velocity Dependence of Nanoscale Wear in Atomic Force Microscopy", Applied Physics Letters, Vol. 91, 163113, 2007. https://doi.org/10.1063/1.2800375
  10. N. S. Tamble and B. Bhushan, "A New Atomic Force Microscopy Based Technique for Studying Nanoscale Friction at High Sliding Velocities", Journal of Physics D, Vol. 38, pp. 764-773, 2005. https://doi.org/10.1088/0022-3727/38/5/015
  11. J. L. Hutter and J. Bechhoefer, "Calibration of Atomic-force Microscope Tips", Review of Scientific Instruments, Vol. 64, No. 7, pp. 1868-1973, 1993. https://doi.org/10.1063/1.1143970
  12. D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley and V. Elings, "Short Cantilevers for Atomic Force Microscopy", Review of Scientific Instruments, Vol. 67, No. 10, pp. 3583-3590, 1996. https://doi.org/10.1063/1.1147177
  13. M. S. Kim, J. H. Choi, J. H. Kim and Y. K. Park, "Accurate Determination of Spring Constant Atomic Force Microscope Cantilever and Comparison with Other Methods", Measurement, Vol. 43, pp. 520-526, 2010. https://doi.org/10.1016/j.measurement.2009.12.020
  14. S. Bistac and A. Galliano, "Nano and Macro Tribology of Elastomers", Tribology Letters, Vol. 18, No. 1, pp. 21-25, 2005. https://doi.org/10.1007/s11249-004-1701-y
  15. E. S. Yoon, R. A. Singh, H. J. Oh and H. S. Kong, "The Effect of Contact Area on Nano/micro-scale Friction", Wear, Vol. 259, pp. 1424-1431, 2005. https://doi.org/10.1016/j.wear.2005.01.033