Inhibitory Effect of Quercetin on the Expression of HSP70 Gene Induced by High Water Temperature in Tilapia

고수온에 의한 틸라피아 HSP70 유전자 발현과 Quercetin의 발현 억제 효과

  • Kwon, Joon-Yeong (Dept. of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Kim, Su-Mi (West Sea Fisheries Research Institute, National Fisheries Research & Development Institute)
  • 권준영 (선문대학교 수산생명의학과) ;
  • 김수미 (국립수산과학원 서해수산연구소)
  • Received : 2011.11.25
  • Accepted : 2011.12.15
  • Published : 2011.12.31

Abstract

Water temperature governs various biological events in many aquatic animals including fish. Temperature changes the rates of gametogenesis and development, in some cases, is even capable of reversing fish sex. Treatments of fish with unusually high temperature are known to induce the expression of HSP70 gene. Development of an effective inhibitor for HSP70 gene expression is, thus, crucial to study the role of HSP70 in the temperature sensitive biological events. We have investigated the inhibitory effect of quercetin, 3,3',4',5,7-pentahydroxyflavon, a natural flavonid, on the expressions of HSP70 gene induced by high temperature ($36^{\circ}C$) in the Nile tilapia, Oreochromis niloticus, larvae and juveniles (10~13 cm in total length). The expression of HSP 70 gene was significantly decreased in tilapia larvae immersed in 50 ${\mu}M$ or 100 ${\mu}M$ quercetin solution for 6 hours before the exposure to high temperature (P<0.05). In particular, the level of HSP70 expression in fish treated with 100 ${\mu}M$ was as low as that of fish without high temperature treatment. Juveniles of tilapia were individually injected with 0.1 $m{\ell}$ of either 0.5 mM, 5 mM or 20 mM of quercetin solution before the exposure to high temperature. As the results, the expression of HSP70 gene in the gonad and brain of juvenile fish was significantly inhibited by the injection of 0.5 mM quercetin solution (P<0.05), but not by higher concentrations. We report, for the first time in the fish, that quercetin effectively inhibits the expression of HSP70 gene induced by high temperature and 100 ${\mu}M$ for the immersion of larvae and 0.5 mM for the injection to juvenile can be used for the effective concentrations for the study of temperature sensitive biological events in tilapia.

수온은 어류를 포함한 수중동물의 다양한 생물학적 사건에 영향을 미친다. 어류의 번식 및 발생도 수온의 변화와 밀접한 관련이 있다. 어류를 높은 수온에 노출시키면 HSP70 유전자 발현을 유도한다. 따라서, HSP70 유전자 발현을 효과적으로 차단할 수 있는 저해제의 개발은 온도에 민감한 생물학적 사건과 관련된 HSP70의 역할을 연구하는데 크게 기여할 수 있다. 본 연구에서는 고온($36^{\circ}C$)에 노출된 틸라피아 자어와 치어(전장 10~13 cm)에서 천연 flavonoid의 일종인 quercetin, 3,3',4',5,7-pentahydroxyflavon의 "고온 유도 HSP70 유전자 발현" 억제효과를 조사하였다. 고온 노출 전에 50 ${\mu}M$ 이상의 quercetin 용액에 6시간 동안 사전 침지한 실험어에서는 HSP70 유전자 발현이 유의하게 감소하였다(P<0.05). 특히, 100 ${\mu}M$로 침지 처리한 개체에서는 고온 처리를 하지 않은 실험어에서 만큼 낮은 HSP70 유전자 발현을 나타내었다. 한편, 0.1 $m{\ell}$씩의 0.5 mM, 5 mM 또는 20 mM의 quercetin 용액을 치어에 주사한 결과, 고수온 유도 HSP70 유전자 발현은 0.5 mM의 quercetin을 주사한 치어의 생식소와 뇌에서 모두 유의하게 감소되었다(P<0.05). 본 연구의 결과는 quercetin이 어류에서 고온에 의해 유도된 HSP70 유전자 발현을 효과적으로 차단할 수 있으며, 틸라피아 자어 침지의 경우 유효 농도 100 ${\mu}M$ 그리고 치어 주사의 경우 유효 농도 0.5 mM로 원하는 효과를 얻을 수 있음을 제시한다.

Keywords

References

  1. Abucay JS, Mair GC, Skibinski DOF, Beardmore JA (1999) Environmental sex determination: The effects of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture 173:219-234. https://doi.org/10.1016/S0044-8486(98)00489-X
  2. Akatsuka N, Kobayashi H, Watanabe E, Iino T, Miyashita K, Miyata S (2004) Analysis of genes related to expression of aromatase and estradiol-regulated genes during sex differentiation in Xenopus embryos. Gen Comp Endocrinol 136:382-388. https://doi.org/10.1016/j.ygcen.2004.01.014
  3. Chang YJ, Lim HK, Kwon JY (2001) Changes in plasma steroid hormone level in rockfish (Sebastes inermis) by the controlled water temperature and photoperiod. J Korean Fish Soc 34:13-16.
  4. Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SAW (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239:851-857. https://doi.org/10.1006/bbrc.1997.7572
  5. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12: 3490-3498. https://doi.org/10.1128/MCB.12.8.3490
  6. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K (1990) Flavonoids inhibit the expression of heat shock proteins. Cell Struct Func 15:393-401. https://doi.org/10.1247/csf.15.393
  7. Hunt C, Calderwood S (1990) Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell line. Gene 87:199-204. https://doi.org/10.1016/0378-1119(90)90302-8
  8. Hunt C, Morimoto RI (1985) Conserved features of eukaryotic HSP70 genes revealed by comparison with the nucleotide sequence of human HSP70. Proc Natl Acad Sci USA 82:6455-6459. https://doi.org/10.1073/pnas.82.19.6455
  9. Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35-56. https://doi.org/10.1023/A:1008812500650
  10. Jakubowicz-Gil J, Rzymowska J, Gawron A (2002) Quercetin, apoptosis, heat shock. Biochem Pharmacol 62:1591-1595.
  11. Kellis JT, Vickery LE (1984) Inhibition of human estrogen synthetase (aromatase) by flavones. Science 225:1032-1034. https://doi.org/10.1126/science.6474163
  12. Kuhnau J (1976) The flavonoids. A class of semi-essential food components: Their role in human nutrition. Wld Rev Nutr Diet 24:117-191.
  13. Kwon JY, Kim J (2010) Responses of HSP gene expressions to elevated water temperature in the Nile tilapia Oreochromis niloticus. Dev Reprod 14:179-184.
  14. Kwon JY, McAndrew BJ, Penman DJ (2002) Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. J Fish Biol 60:625-636. https://doi.org/10.1111/j.1095-8649.2002.tb01689.x
  15. Manwell LA, Heikkila JJ (2007) Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells. Comp Biochem Physiol Part A 148:521-530. https://doi.org/10.1016/j.cbpa.2007.06.422
  16. Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208:1099-1105. https://doi.org/10.1006/bbrc.1995.1447
  17. Nonaka T, Akimoto T, Mitsuhashi N, Tamaki Y, Yokota S, Nakano T (2003) Changes in the localization of heat shock protein 72 correlated with development of thermotolarance in human esophageal cancer cell line. Anticancer Res 23:4677-4687.
  18. Oda D, Mitani H, Naruse K, Shima A (1991) Synthesis of heat shock proteins in the isolated fin of the medaka, Oryzias latipes, acclimated to various temperatures. Comp Biochem Physiol 98B:587-591.
  19. Pelissero C, Lenczowski MJP, Chinzi D, Davail-Cuisset B, Sumpter JP, Fostier A (1996) Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57:215-223. https://doi.org/10.1016/0960-0760(95)00261-8
  20. Plakas SM, Lee TC, Wolke RE (1985) Absence of overt toxicity from feeding the flavonol, quercetin, to rainbow trout (Salmo gairdneri) Food Chem Toxicol 23:1077-1080. https://doi.org/10.1016/0278-6915(85)90055-9
  21. Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experimentia 18:571-573. https://doi.org/10.1007/BF02172188
  22. Schowalter DB, Sullivan WP, Maihle NJ, Dobson AD, Conneely OM, O'Malley BW, Toft DO (1991) Characterization of progesterone receptor binding to the 90- and 70 kDa heat shock proteins. J Biol Chem 266:21165-21173.
  23. Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4-11. https://doi.org/10.1210/me.7.1.4
  24. Tsuji PA, Walle T (2008) Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chemico-Biol Interact 171:37-44. https://doi.org/10.1016/j.cbi.2007.08.007
  25. Wang RE, Kao JLF, Hilliard CA, Pandita RK, Roti JLR, Hunt CR, Taylor JS (2009) Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 52:1912-1921. https://doi.org/10.1021/jm801445c
  26. Weber LP, Kiparissis Y, Hwang GS, Niimi AJ, Janz DM, Metcalfe CD (2002) Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes). Comp Biochem Physiol Part C 131:51-59.
  27. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54:4952-4957.