환우(換羽, molting)에 의한 절식 후 산란계의 혈액 $Mg^{2+}$$K^+$ 변동

Changes of Blood $Mg^{2+}$ and $K^+$ after Starvation during Molting in Laying Hens

  • 고현규 (전북대학교 수의과대학) ;
  • 이세진 (한국기초과학지원연구원전주센터) ;
  • 조인국 (전북대학교 수의과대학) ;
  • 이문영 (전북대학교 수의과대학) ;
  • 박혜민 (전북대학교 수의과대학) ;
  • 문아름 (전북대학교 수의과대학) ;
  • 김정곤 (전북대학교 수의과대학) ;
  • 김기범 (전북대학교 인수공통전염병연구소) ;
  • 김진상 (전북대학교 인수공통전염병연구소) ;
  • 강형섭 (전북대학교 인수공통전염병연구소) ;
  • 김상진 (전북대학교 인수공통전염병연구소)
  • Go, Hyeon-Kyu (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Sei-Jin (Korea Basic Science Institute Jeonju Center) ;
  • Cho, In-Gook (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Mun-Young (College of Veterinary Medicine, Chonbuk National University) ;
  • Park, Hye-Min (College of Veterinary Medicine, Chonbuk National University) ;
  • Mun, A-Reum (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Jeong-Gon (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Gi-Beum (Korean Zoonoses Research Institute, Chonbuk National University) ;
  • Kim, Jin-Shang (Korean Zoonoses Research Institute, Chonbuk National University) ;
  • Kang, Hyung-Sub (Korean Zoonoses Research Institute, Chonbuk National University) ;
  • Kim, Shang-Jin (Korean Zoonoses Research Institute, Chonbuk National University)
  • 심사 : 2011.12.18
  • 발행 : 2011.12.31

초록

자연적 혹은 인위적 환우 기간의 절식은 산란계에서 심각한 대사성 스트레스가 될 수 있다. 절식 그리고 필수적으로 수반되는 사료 재급여 증후군의 대사성 스트레스는 ATP 생성과 밀접한 $Mg^{2+}$, $K^+$과 P 등의 무기염류 불균형을 야기할 수 있다. $Mg^{2+}$은 생체 대상과정에서 필수적인 무기염류이며 스트레스는 생체 $Mg^{2+}$ 요구량을 증가시킬 뿐만 아니라 $Mg^{2+}$ 결핍을 야기할 수 있기 때문에 산란계에서 환우 기간의 절식에 관련된 혈액내 이온의 이온화 농도 및 결합형을 포함한 총농도의 변동을 관찰하였다. 환우 후에 대사성 스트레스와 관련된 생화학 인자의 변화와 수반하여 혈액내 $Mg^{2+}$$K^+$의 감소가 관찰되었다. 따라서 환우 기간의 절식 및 사료 재급여 증후군은 심각한 저마그네슘혈증 및 저칼륨혈증을 야기할 수 있으므로 환우 그리고 재급여 과정에서 $Mg^{2+}$$K^+$의 투여가 권장된다.

Either the fasting during natural molting or the starvation in induced molting would be a severe metabolic stress to laying hens. The metabolic stress during starvation and subsequent refeeding syndrome could lead to unbalance of mineral homeostasis, including $Mg^{2+}$, $K^+$ and P required by ATP synthesis. Since $Mg^{2+}$ is a fundamental ion for normal metabolic processes and stress may not only increase in demands of $Mg^{2+}$ but also produce consequence of $Mg^{2+}$ deficiency, we investigated the changes of blood ionized and total ions related to starvation during molting in laying hens. We founded the significant decrease in blood $Mg^{2+}$ and $K^+$ accompanied by the changes of biochemical parameters relating to increased metabolic stress after molting. These results suggested that appropriate $Mg^{2+}$ and $K^+$ supplements to laying hens could have beneficial effects during molting and subsequent refeeding that could produce a severe hypomagnesemia and hypokalcemia.

키워드

참고문헌

  1. Alodan MA, Mashaly MM. Effect of induced molting in laying hens on production and immune parameters. Poult Sci 1999; 78: 171-177. https://doi.org/10.1093/ps/78.2.171
  2. Berry WD. The physiology of induced molting. Poult Sci 2003; 82: 971-980. https://doi.org/10.1093/ps/82.6.971
  3. Ben Rayana MC, Burnett RW, Covington AK, D'Orazio P, Fogh-Andersen N, Jacobs E, Külpmann WR, Kuwa K, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO, Ritter C, St John A; International Federation of Clinical Chemistry and Laboratory Medicine (IFCC); IFCC Scientific Division Committee on Point of Care Testing. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med 2008; 46: 21-26.
  4. Berry WD, Brake J. Postmolt performance of laying hens molted by high dietary zinc, low dietary sodium, and fasting: egg production and eggshell quality. Poult Sci 1987; 66: 218-226. https://doi.org/10.3382/ps.0660218
  5. Breeding SW, Brake J, Garlich JD, Johnson AL. Molt induced by dietary zinc in a low-calcium diet. Poult Sci 1992; 71: 168-180. https://doi.org/10.3382/ps.0710168
  6. Damron BL, Christmas RB. Final-week performance of straight-run broilers as affected by early coccidiostat with-drawal followed by increased dietary salt. Poult Sci 1997; 76: 1637-1640. https://doi.org/10.1093/ps/76.12.1637
  7. Fuentebella J, Kerner JA. Refeeding syndrome. Pediatr Clin North Am 2009; 56: 1201-1210. https://doi.org/10.1016/j.pcl.2009.06.006
  8. Gaal KK, Safar O, Gulyas L, Stadler P. Magnesium in animal nutrition. J Am Coll Nutr 2004; 23: 754-757. https://doi.org/10.1080/07315724.2004.10719423
  9. Hajj RN, Sell JL. Magnesium requirement of the laying hen for reproduction. J Nutr 1969; 97: 441-448. https://doi.org/10.1093/jn/97.4.441
  10. Hess JB, Britton WM. Effects of dietary magnesium excess in White Leghorn hens. Poult Sci 1997; 76: 703-710. https://doi.org/10.1093/ps/76.5.703
  11. Hurwitz S, Wax E, Nisenbaum Y, Plavnik I. Responses of laying hens to forced molt procedures of variable length with or without light restriction. Poult Sci 1995; 74: 1745-753. https://doi.org/10.3382/ps.0741745
  12. Hussein AS, Cantor AH, Johnson TH. Effect of dietary aluminum on calcium and phosphorus metabolism and performance of laying hens. Poult Sci 1989; 68: 706-714. https://doi.org/10.3382/ps.0680706
  13. Ising H, Bertschat F, The K, Stoboy V, Goossen C, Hengst G: Stress-induced Ca/Mg shifts and vascular response in animals and men: Comparison to electrolyte alterations in myocardial infarction patients. Magnes Bull 1986; 8: 95-103.
  14. Le Ninan F, Cherel Y, Robin JP, Leloup J, Le Maho Y. Early changes in plasma hormones and metabolites during fasting in king penguin chicks. J Comp Physiol B 1988; 158: 395-401. https://doi.org/10.1007/BF00691136
  15. Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. BioMetals 2002; 15: 203-210. https://doi.org/10.1023/A:1016058229972
  16. Mehanna HM, Moledina J, Travis J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ 2008; 336: 1495-1498. https://doi.org/10.1136/bmj.a301
  17. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26. https://doi.org/10.1016/S0009-8981(99)00258-2
  18. Seelig MS. Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review). J Am Coll Nutr 1994; 13: 429-446. https://doi.org/10.1080/07315724.1994.10718432
  19. Stolkowski J. Magnesium in animal and human reproduction. Rev Can Biol 1977; 36: 135-177.
  20. Waddell AL, Board RG, Scott VD, Tullett SG. Role of magnesium in egg shell formation in the domestic hen. Br Poult Sci 1991; 32: 853-864. https://doi.org/10.1080/00071669108417410
  21. Webster AB. Physiology and behavior of the hen during induced molt. Poult Sci 2003; 82: 992-1002. https://doi.org/10.1093/ps/82.6.992