SA-516강 다층용접부 용접후 열처리재의 음향방출신호 특성 평가

Evaluation of Acoustic Emission Signals Characteristics of Post Weld Heat Treated Multi-Pass Weld Block for SA-516 Pressure Vesssel Steel

  • 나의균 (군산대학교 공과대학 기계자동차공학부)
  • Na, Eui-Gyun (School of Mechanical and Automotive Engineering Department, Engineering College, Kunsan National University)
  • 투고 : 2011.06.08
  • 심사 : 2011.10.07
  • 발행 : 2011.10.30

초록

본 연구에서는 SA-516 압력용강의 다층용접재와 용접후 열처리재를 대상으로 음향방출신호 특성을 평가하였다. 또한 예균열 선단에서 형성되는 소성영역의 크기와 음향방출신호와의 관계를 고찰하였으며, 실험 후 파단면을 관찰하여 음향방출원을 규명하여 용접후 열처리의 유효성을 평가하였다. 용접재 및 후 열처리재 모두 용접된 판 두께방향의 중앙부에서 표준 샤르피 시험편을 채취하여 날카로운 균열(예균열)을 내고 난 다음, 4점굽힘과 음향방출실험을 동시에 실시하였다. 후 열처리재와 용접재 공히 탄성영역에서 음향방출 신호는 발생하지 않았으며, 항복하중과 최대하중 사이에서 발생하였고, 최대하중 이후의 소성 심화영역에서 는 신호가 발생하지 않았다. 후 열처리재의 음향방출신호 강도는 시험편의 채취 위치에 관계없이 용접재에 비해 작았으며, 균열선단에서 소성영역의 진전형태는 용접재에 비해 훨씬 단순한 양상을 보였다. 후 열처리재의 파단면에는 용접재와는 달리 산화물의 분포가 훨씬 적었으며, 이는 열처리로 인해 용접부의 음향방출원이 감소하였다는 점에서 볼 때 열처리 효과는 있었다.

In this study, evaluation of acoustic emission signals characteristics for the post weld heat treated (PWHT) multi-pass weldment and weldment was dealt. Charpy standard specimens were taken from the lowest, middle and highest regions of the weld block. Pre-crack was made using the repeated load. Four point bend and AE tests were conducted simultaneously. Regardless of the specimens, AE signals were absent within elastic region and produced in the process of plastic deformation. AE signals for all specimens were not emitted after the maximum load. Value of signal strength for the all PWHT specimens was lower than that of the weldment. Besides, relations of plastic deformation zone size and accumulated AE counts for the PWHT specimens were more simple compared with the weldment. In case of the PWHT specimen, particles on the fractured surface decreased prominently compared with the weldment due.to PWHT. From these results, it can be concluded that PWHT was effective in reducing the AE sources for the weldment.

키워드

참고문헌

  1. K. Ono, H. B. Teoh and I. Roman, "Fracture induced acoustic emission of A533B steel effects of test temperature and fracture mechanisms," Progress in Acoustic Emission II, pp. 105-113 (1984)
  2. J. A. Baron and S. P. Ying, "Acoustic emission source location," Acoustic Emission Testing, pp. 64-65 (1992)
  3. E. G, Na, K, Ono and D. W, Lee, "Evaluation of fracture behavior of SA-516 steel welds using acoustic emission analysis," Journal of Mechanical Science and Technology, Vol. 20, No. 2, pp. 197-204 (2006) https://doi.org/10.1007/BF02915821
  4. E. G. Na and S. G. Lee, "Study on evaluation of behaviors of plastic deformation growth at crack tip of multi-pass weldment for the pressure vessel steel," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 5, pp. 473-478 (2009)
  5. D. P. Rooke and D. J. Cartwright, "Compendium of Stress Intensity Factors," pp. 315 (1976)
  6. C. U. Park, "Study on development and formation of plastic deformation at crack tip for the weldment of steel," Jeon-buk National University Graduate Course, Ph. D Thesis, (1987)