DOI QR코드

DOI QR Code

A 24 kDa Excretory-Secretory Protein of Anisakis simplex Larvae Could Elicit Allergic Airway Inflammation in Mice

  • Park, Hye-Kyung (Department of Internal Medicine, School of Medicine, Pusan National University) ;
  • Cho, Min-Kyoung (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Park, Mi-Kyung (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Kang, Shin-Ae (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Kim, Yun-Seong (Department of Internal Medicine, School of Medicine, Pusan National University) ;
  • Kim, Ki-Uk (Department of Internal Medicine, School of Medicine, Pusan National University) ;
  • Lee, Min-Ki (Department of Internal Medicine, School of Medicine, Pusan National University) ;
  • Ock, Mee-Sun (Department of Parasitology, College of Medicine, Kosin University) ;
  • Cha, Hee-Jae (Department of Parasitology, College of Medicine, Kosin University) ;
  • Yu, Hak-Sun (Department of Parasitology, School of Medicine, Pusan National University)
  • Received : 2011.07.01
  • Accepted : 2011.09.22
  • Published : 2011.12.15

Abstract

We have reported that a 24 kDa protein (22U homologous; As22U) of Anisakis simplex larvae could elicit several Th2-related chemokine gene expressions in the intestinal epithelial cell line which means that As22U may play a role as an allergen. In order to determine the contribution of As22U to allergic reactions, we treated mice with 6 times intra-nasal application of recombinant As22U (rAs22U). In the group challenged with rAs22U and ovalbumin (OVA), the number of eosinophils in the bronchial alveolar lavage fluid (BALF) was significantly increased, as compared to the group receiving only OVA. In addition, mice treated with rAs22U and OVA showed significantly increased airway hyperresponsiveness. Thus, severe inflammation around the airway and immune cell recruitment was observed in mice treated with rAs22U plus OVA. The levels of IL-4, IL-5, and IL-13 cytokines in the BALF increased significantly after treatment with rAs22U and OVA. Similarly, the levels of anti-OVA specific lgE and lgG1 increased in mice treated with rAs22U and OVA, compared to those treated only with OVA. The Gro-${\alpha}$ (CXCL1) gene expression in mouse lung epithelial cells increased instantly after treatment with rAs22U, and allergy-specific chemokines eotaxin (CCL11) and thymus-and-activation-regulated-chemokine (CCL17) gene expressions significantly increased at 6 hr after treatment. In conclusion, rAs22U may induce airway allergic inflammation, as the result of enhanced Th2 and Th17 responses.

Keywords

References

  1. Moreno-Ancillo A, Caballero MT, Cabanas R, Contreras J, Martin-Barroso JA, Barranco P, Lopez-Serrano MC. Allergic reactions to Anisakis simplex parasitizing seafood. Ann Allergy Asthma Immunol 1997; 79: 246-250. https://doi.org/10.1016/S1081-1206(10)63009-8
  2. Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117: 1098-1105. https://doi.org/10.1016/j.jaci.2005.12.1357
  3. Armentia A, Lombardero M, Callejo A, Martin Santos JM, Gil FJ, Vega J, Arranz ML, Martinez C. Occupational asthma by Anisakis simplex. J Allergy Clin Immunol 1998; 102: 831-834. https://doi.org/10.1016/S0091-6749(98)70024-7
  4. Barbuzza O, Guarneri F, Galtieri G, Gangemi S, Vaccaro M. Protein contact dermatitis and allergic asthma caused by Anisakis simplex. Contact Dermatitis 2009; 60: 239-240. https://doi.org/10.1111/j.1600-0536.2009.01519.x
  5. Jeebhay MF, Robins TG, Lehrer SB, Lopata AL. Occupational seafood allergy: A review. Occup Environ Med 2001; 58: 553-562. https://doi.org/10.1136/oem.58.9.553
  6. Nieuwenhuizen N, Herbert DR, Brombacher F, Lopata AL. Differential requirements for interleukin (IL)-4 and IL-13 in protein contact dermatitis induced by Anisakis. Allergy 2009; 64: 1309-1318. https://doi.org/10.1111/j.1398-9995.2009.02002.x
  7. Moneo I, Caballero ML, Gomez F, Ortega E, Alonso MJ. Isolation and characterization of a major allergen from the fish parasite Anisakis simplex. J Allergy Clin Immunol 2000; 106: 177-182. https://doi.org/10.1067/mai.2000.106732
  8. Perez-Perez J, Fernandez-Caldas E, Maranon F, Sastre J, Bernal ML, Rodriguez J, Bedate CA. Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int Arch Allergy Immunol 2000; 123: 120-129. https://doi.org/10.1159/000024442
  9. Asturias JA, Eraso E, Martinez A. Cloning and high level expression in Escherichia coli of an Anisakis simplex tropomyosin isoform. Mol Biochem Parasitol 2000; 108: 263-267. https://doi.org/10.1016/S0166-6851(00)00218-8
  10. Rodriguez-Mahillo AI, Gonzalez-Munoz M, Gomez-Aguado F, Rodriguez-Perez R, Corcuera MT, Caballero ML, Moneo I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int J Parasitol 2007; 37: 907-917. https://doi.org/10.1016/j.ijpara.2007.01.007
  11. Kobayashi Y, Ishizaki S, Shimakura K, Nagashima Y, Shiomi K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol Res 2007; 100: 1233-1241. https://doi.org/10.1007/s00436-006-0396-4
  12. Kobayashi Y, Shimakura K, Ishizaki S, Nagashima Y, Shiomi K. Purification and cDNA cloning of a new heat-stable allergen from Anisakis simplex. Mol Biochem Parasitol 2007; 155: 138-145. https://doi.org/10.1016/j.molbiopara.2007.06.012
  13. Rodriguez-Perez R, Moneo I, Rodriguez-Mahillo A, Caballero ML. Cloning and expression of Ani s 9, a new Anisakis simplex allergen. Mol Biochem Parasitol 2008; 159: 92-97. https://doi.org/10.1016/j.molbiopara.2008.02.008
  14. Caballero ML, Umpierrez A, Moneo I, Rodriguez-Perez R. Ani s 10, a new Anisakis simplex allergen: Cloning and heterologous expression. Parasitol Int 2011; 60: 209-212. https://doi.org/10.1016/j.parint.2011.01.003
  15. Kobayashi Y, Ohsaki K, Ikeda K, Kakemoto S, Ishizaki S, Shimakura K, Nagashima Y, Shiomi K. Identification of novel three allergens from Anisakis simplex by chemiluminescent immunoscreening of an expression cDNA library. Parasitol Int 2011; 60: 144-150. https://doi.org/10.1016/j.parint.2011.01.004
  16. Rodriguez-Mahillo AI, Gonzalez-Munoz M, Moneo I. Identification and allergenic characterisation of a new isoform of the A. simplex allergen Ani s 4. Mol Biochem Parasitol 2008; 160: 152-156. https://doi.org/10.1016/j.molbiopara.2008.04.007
  17. Park JS, Cho MK, Yu HS, Ahn SC. Identification of 24 kDa excretory secretory protein of Anisakis simplex. Experimental Parasitology 2012; 130: 69-72. https://doi.org/10.1016/j.exppara.2011.09.008
  18. Kouzaki H, O'Grady SM, Lawrence CB, Kita H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 2009; 183: 1427-1434. https://doi.org/10.4049/jimmunol.0900904
  19. Chou H, Tam MF, Lee LH, Chiang CH, Tai HY, Panzani RC, Shen HD. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides. Int Arch Allergy Immunol 2008; 146: 277-286. https://doi.org/10.1159/000121462
  20. Kiss A, Montes M, Susarla S, Jaensson EA, Drouin SM, Wetsel RA, Yao Z, Martin R, Hamzeh N, Adelagun R, Amar S, Kheradmand F, Corry DB. A new mechanism regulating the initiation of allergic airway inflammation. J Allergy Clin Immunol 2007; 120: 334-342. https://doi.org/10.1016/j.jaci.2007.04.025
  21. Angkasekwinai P, Park H, Wang YH, Wang YH, Chang SH, Corry DB, Liu YJ, Zhu Z, Dong C. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 2007; 204: 1509-1517. https://doi.org/10.1084/jem.20061675
  22. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, Yao Z, Ying S, Huston DP, Liu YJ. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007; 204: 1837-1847. https://doi.org/10.1084/jem.20070406
  23. Trujillo-Vargas CM, Mayer KD, Bickert T, Palmetshofer A, Grunewald S, Ramirez-Pineda JR, Polte T, Hansen G, Wohlleben G, Erb KJ. Vaccinations with T-helper type 1 directing adjuvants have different suppressive effects on the development of allergen-induced T-helper type 2 responses. Clin Exp Allergy 2005; 35: 1003-1013. https://doi.org/10.1111/j.1365-2222.2005.02287.x
  24. Falcone FH, Loukas A, Quinnell RJ, Pritchard DI. The innate allergenicity of helminth parasites. Clin Rev Allergy Immunol 2004; 26: 61-72. https://doi.org/10.1385/CRIAI:26:1:61
  25. Rook GA. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 2009; 126: 3-11. https://doi.org/10.1111/j.1365-2567.2008.03007.x
  26. Osada Y, Shimizu S, Kumagai T, Yamada S, Kanazawa T. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators. Int J Parasitol 2009; 39: 457-464. https://doi.org/10.1016/j.ijpara.2008.08.007
  27. Pacifico LG, Marinho FA, Fonseca CT, Barsante MM, Pinho V, Sales-Junior PA, Cardoso LS, Araujo MI, Carvalho EM, Cassali GD, Teixeira MM, Oliveira SC. Schistosoma mansoni antigens modulate experimental allergic asthma in a murine model: A major role for CD4+ CD25+ Foxp3+ T cells independent of interleukin-10. Infect Immun 2009; 77: 98-107. https://doi.org/10.1128/IAI.00783-07
  28. Pinelli E, Brandes S, Dormans J, Gremmer E, van Loveren H. Infection with the roundworm Toxocara canis leads to exacerbation of experimental allergic airway inflammation. Clin Exp Allergy 2008; 38: 649-658. https://doi.org/10.1111/j.1365-2222.2007.02908.x
  29. Buijs J, Egbers MW, Lokhorst WH, Savelkoul HF, Nijkamp FP. Toxocara-induced eosinophilic inflammation. Airway function and effect of anti-IL-5. Am J Respir Crit Care Med 1995; 151: 873-878. https://doi.org/10.1164/ajrccm/151.3_Pt_1.873
  30. Ramsey W. Ascaris pneumonitis: case presentation. Iowa Med 1989; 79: 484-486.
  31. Takeuchi H, Zaman K, Takahashi J, Yunus M, Chowdhury HR, Arifeen SE, Baqui A, Wakai S, Iwata T. High titre of anti-Ascaris immunoglobulin E associated with bronchial asthma symptoms in 5-year-old rural Bangladeshi children. Clin Exp Allergy 2008; 38: 276-282.
  32. Sakakibara A, Baba K, Niwa S, Yagi T, Wakayama H, Yoshida K, Kobayashi T, Yokoi T, Hara K, Itoh M, Kimura E. Visceral larva migrans due to Ascaris suum which presented with eosinophilic pneumonia and multiple intra-hepatic lesions with severe eosinophil infiltration--outbreak in a Japanese area other than Kyushu. Intern Med 2002; 41: 574-579. https://doi.org/10.2169/internalmedicine.41.574
  33. Cho MK, Ahn SC, Kim DH, Yu HS. Parasite excretory-secretory proteins elicit TRIF dependent CXCL1 and IL-6 mediated allergic inflammation. Parasite Immunol; 32: 354-360.
  34. Marsland BJ, Camberis M, Le Gros G. Secretory products from infective forms of Nippostrongylus brasiliensis induce a rapid allergic airway inflammatory response. Immunol Cell Biol 2005; 83: 40-47. https://doi.org/10.1111/j.1440-1711.2004.01303.x
  35. Donnelly S, Dalton JP, Loukas A. Proteases in helminth- and allergen- induced inflammatory responses. Chem Immunol Allergy 2006; 90: 45-64.
  36. Webb DC, McKenzie AN, Koskinen AM, Yang M, Mattes J, Foster PS. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 2000; 165: 108-113. https://doi.org/10.4049/jimmunol.165.1.108
  37. Sher A, Coffman RL, Hieny S, Cheever AW. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J Immunol 1990; 145: 3911-3916.
  38. Ishizaka T, Urban J, Jr., Takatsu K, Ishizaka K. Immunoglobulin E synthesis in parasite infection. J Allergy Clin Immunol 1976; 58: 523-538. https://doi.org/10.1016/0091-6749(76)90196-2
  39. Ehigiator HN, Stadnyk AW, Lee TD. Extract of Nippostrongylus brasiliensis stimulates polyclonal type-2 immunoglobulin response by inducing De novo class switch. Infect Immun 2000; 68: 4913-4922. https://doi.org/10.1128/IAI.68.9.4913-4922.2000
  40. Prause O, Laan M, Lotvall J, Linden A. Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-alpha- and interleukin-8 release in human bronchial epithelial cells. Eur J Pharmacol 2003; 462: 193-198. https://doi.org/10.1016/S0014-2999(03)01341-4
  41. Kawaguchi M, Kokubu F, Matsukura S, Ieki K, Odaka M, Watanabe S, Suzuki S, Adachi M, Huang SK. Induction of C-X-C chemokines, growth-related oncogene alpha expression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of Raf1-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 pathway. J Pharmacol Exp Ther 2003; 307: 1213-1220. https://doi.org/10.1124/jpet.103.056341
  42. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 2008; 180: 5625-5635. https://doi.org/10.4049/jimmunol.180.8.5625
  43. Shainheit MG, Smith PM, Bazzone LE, Wang AC, Rutitzky LI, Stadecker MJ. Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces Th17 cells in a mouse strain prone to severe immunopathology. J Immunol 2008; 181: 8559-8567. https://doi.org/10.4049/jimmunol.181.12.8559
  44. Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 2001; 193: 1087-1096. https://doi.org/10.1084/jem.193.9.1087
  45. Sallusto F. The role of chemokines and chemokine receptors in T cell priming and Th1/Th2-mediated responses. Haematologica 1999; 84 Suppl EHA-4: 28-31.

Cited by

  1. Alteration of Cytokine Production during Visceral Larva Migrans by Toxascaris leonina in Mice vol.51, pp.5, 2011, https://doi.org/10.3347/kjp.2013.51.5.583
  2. Allergen-like Molecules from Parasites vol.21, pp.2, 2011, https://doi.org/10.2174/1389203720666190708154300
  3. Anisakis pegreffii Extract Induces Airway Inflammation with Airway Remodeling in a Murine Model System vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/2522305