DOI QR코드

DOI QR Code

Inverse Estimation of Fatigue Life Parameters of Springs Based on the Bayesian Approach

베이지안 접근법을 이용한 스프링 피로 수명 파라미터의 역 추정

  • Heo, Chan-Young (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.) ;
  • An, Da-Wn (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.) ;
  • Won, Jun-Ho (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.) ;
  • Choi, Joo-Ho (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.)
  • 허찬영 (한국항공대학교 항공우주 및 기계공학과) ;
  • 안다운 (한국항공대학교 항공우주 및 기계공학과) ;
  • 원준호 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2010.08.24
  • Accepted : 2011.01.21
  • Published : 2011.04.01

Abstract

In this study, a procedure for the inverse estimation of the fatigue life parameters of springs which utilize the field fatigue life test data is proposed to replace real test with the FEA on fatigue life prediction. The Bayesian approach is employed, in which the posterior distributions of the parameters are determined conditional on the accumulated life data that are routinely obtained from the regular tests. In order to obtain the accurate samples from the distributions, the Markov chain Monte Carlo (MCMC) technique is employed. The distributions of the parameters are used in the FEA for predicting the fatigue life in the form of a predictive interval. The results show that the actual fatigue life data are found well within the posterior predictive distributions.

본 연구에서는 현장의 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석(Finite Element Analysis)을 이용하여 스프링의 피로 수명 파라미터를 역 추정(Inverse Estimation)하는 연구를 수행하였다. 베이지안 접근법(Bayesian Approach)을 이용하여 불확실성 피로 수명 파라미터의 사후분포(Posterior distribution)를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플링 데이터를 기반으로 피로 수명을 예측한 결과 신뢰 수준 내에서 실제 수명 시험 결과가 예측한 범위 내에 잘 포함되고 있음을 알 수 있었다.

Keywords

References

  1. Budynas & Nisbett. 2007, Shigley's MechanicalEngineering Design, McGraw-Hill, New York.
  2. Yim, H., J. and Lee, S., B., 1996, "An IntegratedCAE System for Dynamic Stress and Fatigue LifePrediction of Mechanical Systems," KSMEInternational Journal, Vol. 10, No. 2, pp. 158-168. https://doi.org/10.1007/BF02953655
  3. Song, Y. C., Yoh, E. G. and Lee, Y. S., 1999, “AStudy on the Prediction of Fatigue Life in Die,”Transactions of the Korean Society of Machine ToolEngineers, Vol. 8, No. 4, pp. 87-92.
  4. Lee, S., B., Park, T., W. and Yim, H., J., 2000, “AStudy on Computational Method for Fatigue LifePrediction of Vehicle Structure,” Journal of KSNVE,Vol. 10, No. 4, pp. 686-691.
  5. Yoon, H. Y. and Zhang, J., 2008, “Evaluation forProbabilistic Distributions of Fatigue Life of MarinePropeller Materials by using a Monte CarloSimulation,” Trans. of the KSME(A), Vol. 32, No. 12,pp. 1055-1062. https://doi.org/10.3795/KSME-A.2008.32.12.1055
  6. Kim, D. S. and Kim, J. K., 1994, “The Prediction ofFatigue Life According to the Determination of theParameter in Residual Strength Degradation Model,”Trans. of the KSME, Vol. 18, No. 8, pp. 2053-2061.
  7. Hu, Q. and Xu, H., 1995, “Two-parameters nominalstress approach,” International journal of fatigue, Vol.17, No. 5, pp. 339-341. https://doi.org/10.1016/0142-1123(95)99734-R
  8. Lin, J. and Pan, J., 1998, “A New Method forSelection of Population Distribution and ParameterEstimation,” Reliability Engineering & System Safety,Vol. 60, No. 3, pp. 247-255. https://doi.org/10.1016/S0951-8320(97)00171-3
  9. Gunawan, S. and Papalambros, P. Y., 2006, “ABayesian Approach to Reliability-Based OptimizationWith Incomplete Information,” Journal of MechanicalDesign, Vol. 128, No. 4, pp. 909-918. https://doi.org/10.1115/1.2204969
  10. Cruse, T.A. and Brown, J.M., 2007, "ConfidenceInterval Simulation for Systems of RandomVariables," Journal of Engineering for Gas Turbinesand Power ASME, Vol. 129, pp.836-842. https://doi.org/10.1115/1.2718217
  11. An, D. W., Won, J. H., Kim, E. J. and Choi, J. H.,2009, “Reliability Analysis Under Input Variable andMetamodel Uncertainty Using Simulation MethodBased on Bayesian Approach,” Trans. of the KSME(A),Vol. 33, No. 10, pp. 1163-1170. https://doi.org/10.3795/KSME-A.2009.33.10.1163
  12. Andrieu, C., de Freitas, N., Doucet, A. and Jordan,M., 2003, "An Introduction to MCMC for MachineLearning," Machine Learning, Vol. 50, No. 1-2, pp.5-43. https://doi.org/10.1023/A:1020281327116
  13. Rice, R. C., 1997, SAE Fatigue Design Handbook,3rd ed., SAE, Warrendale.
  14. Gelman, A., Carlim, J. B., Strern, H. S. and Rubin,D. B., 2004, Bayesian Data Analysis, CHAPMAN &HALL/CRC, Inc., New York.