References
- Budynas & Nisbett. 2007, Shigley's MechanicalEngineering Design, McGraw-Hill, New York.
- Yim, H., J. and Lee, S., B., 1996, "An IntegratedCAE System for Dynamic Stress and Fatigue LifePrediction of Mechanical Systems," KSMEInternational Journal, Vol. 10, No. 2, pp. 158-168. https://doi.org/10.1007/BF02953655
- Song, Y. C., Yoh, E. G. and Lee, Y. S., 1999, “AStudy on the Prediction of Fatigue Life in Die,”Transactions of the Korean Society of Machine ToolEngineers, Vol. 8, No. 4, pp. 87-92.
- Lee, S., B., Park, T., W. and Yim, H., J., 2000, “AStudy on Computational Method for Fatigue LifePrediction of Vehicle Structure,” Journal of KSNVE,Vol. 10, No. 4, pp. 686-691.
- Yoon, H. Y. and Zhang, J., 2008, “Evaluation forProbabilistic Distributions of Fatigue Life of MarinePropeller Materials by using a Monte CarloSimulation,” Trans. of the KSME(A), Vol. 32, No. 12,pp. 1055-1062. https://doi.org/10.3795/KSME-A.2008.32.12.1055
- Kim, D. S. and Kim, J. K., 1994, “The Prediction ofFatigue Life According to the Determination of theParameter in Residual Strength Degradation Model,”Trans. of the KSME, Vol. 18, No. 8, pp. 2053-2061.
- Hu, Q. and Xu, H., 1995, “Two-parameters nominalstress approach,” International journal of fatigue, Vol.17, No. 5, pp. 339-341. https://doi.org/10.1016/0142-1123(95)99734-R
- Lin, J. and Pan, J., 1998, “A New Method forSelection of Population Distribution and ParameterEstimation,” Reliability Engineering & System Safety,Vol. 60, No. 3, pp. 247-255. https://doi.org/10.1016/S0951-8320(97)00171-3
- Gunawan, S. and Papalambros, P. Y., 2006, “ABayesian Approach to Reliability-Based OptimizationWith Incomplete Information,” Journal of MechanicalDesign, Vol. 128, No. 4, pp. 909-918. https://doi.org/10.1115/1.2204969
- Cruse, T.A. and Brown, J.M., 2007, "ConfidenceInterval Simulation for Systems of RandomVariables," Journal of Engineering for Gas Turbinesand Power ASME, Vol. 129, pp.836-842. https://doi.org/10.1115/1.2718217
- An, D. W., Won, J. H., Kim, E. J. and Choi, J. H.,2009, “Reliability Analysis Under Input Variable andMetamodel Uncertainty Using Simulation MethodBased on Bayesian Approach,” Trans. of the KSME(A),Vol. 33, No. 10, pp. 1163-1170. https://doi.org/10.3795/KSME-A.2009.33.10.1163
- Andrieu, C., de Freitas, N., Doucet, A. and Jordan,M., 2003, "An Introduction to MCMC for MachineLearning," Machine Learning, Vol. 50, No. 1-2, pp.5-43. https://doi.org/10.1023/A:1020281327116
- Rice, R. C., 1997, SAE Fatigue Design Handbook,3rd ed., SAE, Warrendale.
- Gelman, A., Carlim, J. B., Strern, H. S. and Rubin,D. B., 2004, Bayesian Data Analysis, CHAPMAN &HALL/CRC, Inc., New York.