DOI QR코드

DOI QR Code

A Poof of Utkin's Theorem for the SI Uncertain Integral linear Case

Utkin 정리의 단일입력 불확실 적분 선형 시스템에 대한 증명

  • 이정훈 (경상대학교 공대 제어계측공학과)
  • Received : 2010.05.12
  • Accepted : 2011.03.10
  • Published : 2011.04.01

Abstract

In this note, a proof of Utkin's theorem is presented for the SI(Single Input) uncertain integral linear case. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods are proved clearly and comparatively for SI uncertain integral linear systems. With respect to the sliding surface transformation, the equation of the sliding mode, the sliding surface is invariant. Both the applied control inputs have the same gains. By means of the two transformation methods the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Keywords

References

  1. V.I. Utkin,, Sliding Modes and Their Application in Variable Structure Systems. Moscow, 1978.
  2. Decarlo, R.A., Zak, S.H., and Mattews, G.P., "Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial," Proc. IEEE, 1988, 76, pp.212-232. https://doi.org/10.1109/5.4400
  3. Young, K.D., Utkin, V.I., Ozguner, U, "A Control Engineer's Guide to Sliding Mode Control," 1996 IEEE Workshop on Variable Structure Systems, pp.1-14
  4. Drazenovic, B.:The invariance conditions in variable structure systems, Automatica, 1969, (5), pp.287-295.
  5. J. H. Lee and M. J. Youn, "An Integral-Augmented Optimal Variable Structure control for Uncertain dynamical SISO System, KIEE(The Korean Institute of Electrical Engineers), vol.43, no.8, pp.1333-1351, 1994.
  6. V. I. Utkin and K. D. Yang, "Methods for Constructing Discontinuity Planes in Multidimentional Variable Structure Systems," Automat. Remote Control, vol. 39 no. 10 pp.1466-1470, 1978.
  7. D. M. E. El-Ghezawi, A. S. I. and S. A. Bilings, "Analysis and Design of Variable Structure Systems Using a Geometric Approach," Int. J. Control, vol,38, no.3 pp.657-671,1 1983. https://doi.org/10.1080/00207178308933100
  8. A. Y. Sivaramakrishnan, M. Y. Harikaran, and M. C. Srisailam, " Design of Variable Structure Load Frequency cntroller Using Pole Assignment Technique," Int. J. Control, vol,40 no.3, pp. 487-498, 1984. https://doi.org/10.1080/00207178408933289
  9. C. M. Dorling and A. S. I. Zinober, "Two approaches to Hyperplane Design in Muntivariable Variable Structure Control systems," Int. J. Control, vol,44 no.1, pp. 65-82 1986. https://doi.org/10.1080/00207178608933583
  10. S. V. Baida and D. B. Izosimov, "Vector Method of Design of Sliding Motion and Simplex Algorithms." Automat. Remote Control, vol. 46 pp.830-837, 1985.
  11. Variable Structure Control systems," Int. J. Control, vol,44 no.1, pp. 65-82 1986. https://doi.org/10.1080/00207178608933583
  12. B. Fernandez and J. K. Hedrick, "Control of Multivariable Nonlinear System by the Sliding Mode Method," I. J. Control, vol.46, no.3 pp.1019-1040, 1987. https://doi.org/10.1080/00207178708547410
  13. S. R. Hebertt, "Differential Geometric Methods in Variable Structure Control," Int. J. Control, vol,48 no.4, pp.1359-1390, 1988. https://doi.org/10.1080/00207178808906256
  14. T. L. Chern and Y. C. Wu, "An Optimal Variable Structure Control with Integral Compensation for Electrohydraulic postion Servo Control Systems," IEEE T. Industrial Electronics, vol.39, no.5 pp460-463, 1992. https://doi.org/10.1109/41.161478
  15. K. Yeung, C. Cjiang, and C. Man Kwan, "A Unifying Design of Sliding Mode and Classical Controller' IEEE T. Automatic Control, vol.38, no.9 pp1422-1427, 1993. https://doi.org/10.1109/9.237660
  16. S. H. Zak and S. Hui, "Output Feedback Variable Structure Controllers and State Estimators for Uncertain/Nonlinear Dynamic Systems," IEE Proc. vol. 140, no.1 pp.41-50, 1993 https://doi.org/10.1049/ip-d.1993.0006
  17. R. DeCarlo and S. Drakunov, "Sliding Mode Control Design via Lyapunov Approach," Proc. 33rd IEEE Conference on CDC, pp.1925-1930, 1994.
  18. W. C. Su S. V. Drakunov, and U. Ozguner, "Constructing Discontinuity Surfaces for Variable Structure Systems: A Lyapunov Approach," Automatica, vol.32 no.6 pp.925-928,1996 https://doi.org/10.1016/0005-1098(96)00017-9
  19. J. Ackermann and V. I. Utkin, " Sliding Mode Control Design based on Ackermann's Formula," IEEE T. Automatic Control, vol.43, no.9 pp.234-237, 1998. https://doi.org/10.1109/9.661072
  20. T. Acarman and U. Ozguner, "Relation of Dynamic Sliding surface Design and High Order Sliding Mode Controllers," Proc. 40th IEEE Conference on CDC, pp.934-939, 2001.
  21. W. J. Cao and J. X. Xu, "Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems," IEEE T. Automatic Control, vol.49, no83 pp1355-1360,2004. https://doi.org/10.1109/TAC.2004.832658
  22. H. H. Choi, " LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems, IEEE T. Automatic Control, vol.52, no.2 pp736-742, 2007. https://doi.org/10.1109/TAC.2007.894543
  23. J. H. Lee, "A Poof of Utkin's Theorem for a SI Uncertain Linear Case," KIEE (to be appeared) https://doi.org/10.5370/KIEE.2011.60.4.843
  24. J. H. Lee, "A New Improved Integral Variable Structure Controller for Uncertain Linear Systems", KIEE vol.50D, no.4, pp.177-183, 2001.
  25. J. H. Lee, "A MIMO VSS with an Integral-Augmented Sliding surface for Uncertain Multivariable Systems," KIEE vol.59, no.9, pp.950-959, 2010.
  26. J. H. Lee, "A Proof of Utkin's Theorem for a MI Uncertain Linear Case," KIEE vol.59, no.9, pp.1680-1685, 2010.