DOI QR코드

DOI QR Code

Effect of Simulated Acid Rain on Fatty Acid Composition and Antioxidant System in Garden Balsam(Impatiens balsamina L.)

인공산성비가 봉선화(Impatiens balsamina L.)의 지방산 구성 및 항산화 작용에 미치는 영향

  • Kim, Hak-Yoon (Department of Global Environment, Keimyung University)
  • Received : 2011.06.08
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

The effects of simulated acid rain (SAR) on fatty acid composition and biochemical defense responses of plant was investigated. Garden balsam (Impatiens balsamina L.) was exposed to four pH levels (5.6, 4.0, 3.0, 2.0) of SAR and placed in the growth chambers for 2 weeks. SAR drastically inhibited chlorophyll content of garden balsam. The level of $H_2O_2$ was significantly increased by SAR. As pH levels decreased from 5.6 to 2.0, the ratio of unsaturated to saturated fatty acids of garden balsam was increased. Changes of three major polyamines (putrescine, spermidine and spermine) of garden balsam leaves were observed. All of the polyamine contents were increased with SAR. Catalase activities of the plant affected by SAR were increased as the pH decreased. The results indicate that the application of SAR generates oxidative stresses from the garden balsam and retards the plant growth significantly. A biochemical protect mechanism might be activated to neutralize the oxidative stresses generated through SAR.

산성비에 대한 봉선화의 피해양상과 지질조성 변화 및 방어기작 등을 조사하기 위하여 2주 동안 여러 농도(pH 2.0, 3.0, 4.0, 5.6)의 인공산성비 실험을 수행하였다. 인공산성비의 pH가 낮을수록 생육피해가 심하게 나타났다. 인공산성비의 pH가 낮을수록 엽록소 함량은 감소하였으며 $H_2O_2$ 함량은 증가하였다. 인지질과 당지질 모두 인공산성비에 의해 포화지방산이 증가하고 불포화지방산이 감소하는 것으로 나타났다. 봉선화에는 주로 3종류의 polyaimne이 존재하며 이들 모두 인공산성비의 pH가 낮을수록 증가하는 것으로 나타났다. Catalase의 활성도 인공산성비의 pH가 낮을수록 증가하였다. 이상의 결과를 종합해 볼 때, 인공산성비에 의해 활성산소 생성되고, 지방산의 변화를 일어나며, polyamine 증가와 catalase 활성 증가는 산성비의 피해를 최소화하기 위한 방어기작이 작용한 것으로 사료된다.

Keywords

References

  1. An, L., H. Feng, X. Tang and X. Wang. 2000. Changes of microsomal membrane properties in spring wheat leaves (Triticum aestivum L.) exposed to enhanced ultraviolet-B radiation. J. Photochem. and Photobiol. 57(1):60-65. https://doi.org/10.1016/S1011-1344(00)00077-4
  2. Chance, B., and A. C. Machiy. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 2:764-775. https://doi.org/10.1016/S0076-6879(55)02300-8
  3. Evans, L. S., and T. M. Curry. 1979. Differential response of plant foliage to simulated acid rain. Amer. J. Bot. 66(3):953-962. https://doi.org/10.2307/2442237
  4. Ferenbaugh, R. W. 1976. Effects of simulated acid rain on Phaseolus vulgaris L. (Fabaceae). Amer. J. Bot. 63(1):238-288.
  5. Foyer, C. H., P. Descourvieres and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  6. Gao, Q., and L. Zhang. 2008. Ultraviolet-B induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J. Plant Physiol. 165(1):138-148. https://doi.org/10.1016/j.jplph.2007.04.002
  7. Haines, B., M. Stefani and F. Hendrix. 1980. Acid rain : threshold of leaf damage in eight plant species from a southern Appalachian forest succession. Water, Air and Soil, Pollut. 114(2):403-407.
  8. Huh, H. W., and M. K. Huh. 1998. The effect of simulated acid rain on the growth of important crops. Kor. J. Environ. Sci. 7(2):123-131.
  9. Kim, H. Y. 2005. Effect of simulated acid rain on antioxidants and related enzymes in garden balsam (Impatiens balsamina L.). Kor. J. Life. Sci. 15(3):382-386. https://doi.org/10.5352/JLS.2005.15.3.382
  10. Kim, H. Y. 2006. Effect of UV-B on fatty acid composition, lipid peroxidation and polyamine in kidney bean (Phaseolus vulgaris L.). Kor. J. Life. Sci. 16(3):522-526. https://doi.org/10.5352/JLS.2006.16.3.522
  11. Kim, H. Y., I. J. Lee, D. H. Shin and M. S. Chio. 2000. Effect of simulated acid rain on germination, growth, acid buffering capacity and nutrient leaching in Impatiens balsamina L. and Tagetes patula L. Kor. J. Life. Sci. 10(6):598-604.
  12. Knudson, L. L., T. W. Tibbitts and G. E. Edwards. 1977. Measurement of ozone injury by determination of chlorophyll concentration. Plant Physiol. 60(3):606-608. https://doi.org/10.1104/pp.60.4.606
  13. Koricheva, J., S. Roy, J. A. Vranjic and P. R. Hughes. 1977. Antioxidant responses to simulated acid rain andantioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ. Pollut. 95(2):249-258. https://doi.org/10.1016/S0269-7491(96)00071-1
  14. Lee, J. J., G. E. Neely, S. C. Perrjiean and L. C. Grothaus. 1981. Effects of simulated sulfuric acid rain on yield, growth and foliar injury of several crops. Environ. Exp. Bot. 21(2):171-185. https://doi.org/10.1016/0098-8472(81)90024-1
  15. Lee, J. J., M. S. Moon and H. Y. Kim. 1999. Effects of Mg-deficieney on oxidative stress and protein pattern in pumpkin seedlings. Kor. J. Weed Sci. 19(2):121-128.
  16. Luxmoore, R. J., T. Gizzard and R. H. Strand. 1981. Nutrient translocation in the outer canopy and understory of an eastern deciduous forest. For. Sic. 27(3):505-518.
  17. Mcclung, C. R. 1997. Regulation of catalases in arabidopsis. Free Radic. Biol. Med. 23(3):489-496. https://doi.org/10.1016/S0891-5849(97)00109-3
  18. NIER. 2007. More than 50% of sulfur in precipitation over Korean peninsula came from China. Release Copy. National Institute of Environmental Research. 2007/03/01.
  19. Neves, N. R., M. A. Oliva, D. C. Centeno, A. C. Costa, R. F. Ribas and E. G. Pereira. 2009. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition. Sci. Total Environ. 407:3740-3745. https://doi.org/10.1016/j.scitotenv.2009.02.035
  20. Norman, H. A., D. T. Krizek and R. M. Mirecki. 2001. Changes in membrane lipid and free fatty acid composition during low temperature preconditioning against $SO_2$ injury in coleus. Phytochemistry 58(2):263-268. https://doi.org/10.1016/S0031-9422(01)00242-4
  21. Nouchi, I. 199. Acid rain and plant damage. J. Agr. Met. 47(1):165-175.
  22. Singh, A., and M. Agrawal. 1996. Response of two cultivars of Triticum aestivum L. to simulated acid rain, Environ. Pollut. 91(1):161-167. https://doi.org/10.1016/0269-7491(95)00056-9
  23. Turrens, J. F. 2010. Superoxide Dismutase and Catalase. Comprehen. Toxicol. 4(12):219-227.
  24. Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci. 151(1):59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  25. Walters, D. R. 2003. Polyamines and plant disease. Phytochemistry 64(1):97-107. https://doi.org/10.1016/S0031-9422(03)00329-7
  26. Wang, X., G. Shi, Q. Xu and J. Hu. 2007. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J. Plant Physiol. 164(8):1062-1070. https://doi.org/10.1016/j.jplph.2006.06.003
  27. Wyrwicka, A., and S. M. Sklodowska. 2006. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Exp. Bot. 56(1):198-204. https://doi.org/10.1016/j.envexpbot.2005.02.003
  28. Yan, K., W. Chen, X. He, G. Zhang, S. Xu and L. Wang. 2010. Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated $O_3$. Environ. Exp. Bot. 69(2):198-204. https://doi.org/10.1016/j.envexpbot.2010.03.008
  29. Zeeshan, M., and S. M. Prasad. 2009. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. S. African. J. Bot. 75(3):466-474. https://doi.org/10.1016/j.sajb.2009.03.003