DOI QR코드

DOI QR Code

Study on a Shape Deformation of Water Meniscus for the Rectangular and Circular Tips Moving Horizontally

사각 및 원형 팁의 횡운동에 의한 물 메니스커스 형상변화에 관한 연구

  • Kim, Sang-Sun (School of Mechanical Engineering, Pusan National University) ;
  • Son, Sung-Wan (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan National University) ;
  • Yoon, Hyun-Sik (Advanced Ship Engineering Research Center, Pusan National University) ;
  • Kim, Hyung-Rak (School of Mechanical Engineering, Pusan National University)
  • 김상선 (부산대학교 기계공학부) ;
  • 손성완 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 윤현식 (부산대학교 첨단조선공학 연구센터) ;
  • 김형락 (부산대학교 기계공학부)
  • Received : 2011.10.05
  • Published : 2011.12.10

Abstract

A two-dimensional immiscible water meniscus deformation phenomena on a moving tip in a channel has been investigated by using lattice Boltzmann method involving two-phase model. We studied the behavior of a water meniscus between the tip and a solid surface. The contact angles of the tip and a solid surface considered are in the range from $10^{\circ}$ to $170^{\circ}$. The velocity of the tip used in the study are 0.01, 0.001, and 0.0001. The shapes of tip considered are rectangular and circular. The behavior of water confined between the tip and a solid surface depends on the contact angles of the tip and a solid surface, and the tip velocity. When the tip is moving, we can observe the various behaviors of shear deformation of a water meniscus. As time goes on, the behavior of a water meniscus can be classified into three different patterns which are separated from the tip or adhered to the tip or sticked to a solid surface according to the contact angles and the tip velocity.

Keywords

References

  1. Trevino, C., Forro-Fontan, C., and Mendez, F., 1998, Asymptotic analysis of axisymmetric drop spreading, Phys. Rev. E, Vol. 58, pp. 4478-4484. https://doi.org/10.1103/PhysRevE.58.4478
  2. Yang, J. and Koplik, J., 1991, Molecular dynamics of drop spreading on a solid surface, Phys. Rev., Vol. 67, pp. 3539-3542.
  3. Gu, Y. and Li, D., 1998, A model for a liquid drop spreading on a solid surface, Colloids Surfaces A:Physicochem, Eng. Aspects, Vol. 142, pp. 243-256. https://doi.org/10.1016/S0927-7757(98)00358-6
  4. Bayer, I. S. and Megaridis, C. M., 2006, Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics, J. Fluid Mech., Vol. 558, pp. 415-449. https://doi.org/10.1017/S0022112006000231
  5. Cossali, G. E., Coghe, A., and Marengo, M., 1997, The impact of a single drop on a wetted solid surface, Exp. Fluids, Vol. 22, pp. 463-472. https://doi.org/10.1007/s003480050073
  6. Mao, T., Kuhn, D. C. S., and Tran, H., 1997, Spread and rebound of liquid droplet upon impact on flat surfaces, AIChE. J., Vol. 43, pp. 2169-2179. https://doi.org/10.1002/aic.690430903
  7. Sikalo, S., Marengo, M., Tropea, C., and Ganic, E. N., 2002, Analysis of impact of droplets on horizontal surfaces, Exp. Therm. Fluid Sci., Vol. 25, pp. 503-510. https://doi.org/10.1016/S0894-1777(01)00109-1
  8. Zhang, X. and Basaran, O. A., 1997, Dynamic surface tension effects in impact of a drop with solid surface, J. Colloid Interf. Sci., Vol. 187, pp. 166-178. https://doi.org/10.1006/jcis.1996.4668
  9. Fujimoto, H., Ogino, T., Takuda, H., and Hatta, N., 2001, Collision of a droplet with a hemispherical static droplet on a solid, Int. J. Multiphase Flow, Vol. 27, pp. 1127-1245. https://doi.org/10.1016/S0301-9322(00)00068-9
  10. Manservisi, S. and Scardovelli, R., 2009, A variational approach to the contact angle dynamics of spreading droplets, Computers and Fluids, Vol. 38, pp. 406-424. https://doi.org/10.1016/j.compfluid.2008.05.001
  11. Tanaka, Y., Washio, Y., Yoshino, M., and Hirata, T., 2011, Numerical simulation of dynamic behavior of droplet on solid surface by the two-phase lattice Boltzmann method, Computers and Fluids, Vol. 40, pp. 68-78. https://doi.org/10.1016/j.compfluid.2010.08.007
  12. Lunkad, S. F., Buwa, V. V., and Nigam, K. D. P., 2007, Numerical simulations of drop impact and spreading on horizontal and inclined surfaces, Chem. Eng. Sci., Vol. 62, pp. 7214- 7224. https://doi.org/10.1016/j.ces.2007.07.036
  13. Sikalo, S., Tropea, C., and Ganic, E. N., 2005, Dynamic wetting angle of a spreading droplet, Exp. Therm. Fluid Sci., Vol. 29, pp. 795- 802. https://doi.org/10.1016/j.expthermflusci.2005.03.006
  14. Bhatnagar, P. L., Gross, E. P., and Krook, M., 1954, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., Vol. 94, pp. 511-525. https://doi.org/10.1103/PhysRev.94.511
  15. Gunstensen, A. K., Rothmman, D. H., and Zaleski, S., 1991, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, Vol. 43, pp. 4320-4327. https://doi.org/10.1103/PhysRevA.43.4320
  16. Wu, L., Tsutahara, M., Kim, L. S., and Ha, M. Y., 2008, Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, Int. J. Multiphase Flow, Vol. 34, pp. 852-864. https://doi.org/10.1016/j.ijmultiphaseflow.2008.02.009