DOI QR코드

DOI QR Code

CLOZ-COVERS OF TYCHONOFF SPACES

  • Kim, Chang-Il (Department of Mathematics Education, Dankook University)
  • Received : 2011.08.31
  • Accepted : 2011.10.23
  • Published : 2011.11.30

Abstract

In this paper, we construct a cover ($\mathcal{L}(X)$, $c_X$) of a space X such that for any cloz-cover (Y, f) of X, there is a covering map g : $Y{\longrightarrow}\mathcal{L}(X)$ with $c_X{\circ}g=f$. Using this, we show that every Tychonoff space X has a minimal cloz-cover ($E_{cc}(X)$, $z_X$) and that for a strongly zero-dimensional space X, ${\beta}E_{cc}(X)=E_{cc}({\beta}X)$ if and only if $E_{cc}(X)$ is $z^{\sharp}$-embedded in $E_{cc}({\beta}X)$.

Keywords

Acknowledgement

Supported by : Dankook university

References

  1. J. Adamek, H. Herrilich & G.E. Strecker: Abstract and concrete categories. John Wiley and Sons Inc. New York, 1990.
  2. L. Gillman & M. Jerison: Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
  3. M. Henriksen, J. Vermeer & R.G. Woods: Quasi-F covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), 779-804.
  4. M. Henriksen, J. Vermeer & R.G. Woods: Wallman covers of compact spaces. Dissertationes Mathematicae 283 (1989), 5-31.
  5. S. Iliadis: Absolute of Hausdorff spaces. Sov. Math. Dokl. 4 (1963), 295-298.
  6. C.I. Kim: Minimal Cloz-covers of non-compact spaces. J. Korean Soc. Math. Edu. 4 (1997), 151-159.
  7. J. Porter & R.G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer, Berlin, 1988.
  8. J. Vermeer: The smallest basically disconnected preimage of a space. Topol. Appl. 17 (1984), 217-232. https://doi.org/10.1016/0166-8641(84)90043-9

Cited by

  1. MINIMAL CLOZ-COVERS AND BOOLEAN ALGEBRAS vol.20, pp.4, 2011, https://doi.org/10.11568/kjm.2012.20.4.517
  2. WALLMAN COVERS AND QUASI-F COVERS vol.20, pp.2, 2011, https://doi.org/10.7468/jksmeb.2013.20.2.103
  3. MINIMAL CLOZ-COVERS OF κX vol.35, pp.2, 2011, https://doi.org/10.5831/hmj.2013.35.2.303