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CLOZ-COVERS OF TYCHONOFF SPACES

ChangIl Kim

Abstract. In this paper, we construct a cover (L(X), cX) of a space X such that
for any cloz-cover (Y, f) of X, there is a covering map g : Y −→ L(X) with cX ◦g =
f . Using this, we show that every Tychonoff space X has a minimal cloz-cover
(Ecc(X), zX) and that for a strongly zero-dimensional space X, βEcc(X) = Ecc(βX)

if and only if Ecc(X) is z#-embedded in Ecc(βX).

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and βX denotes the
Stone-Čech compactification of a space X.

Iliadis constructed the absolutes of Hausdorff spaces, which are exactly the mini-
mal extremally disconnected covers of Hausdorff spaces and they turn out to be the
perfect onto projective covers([5]).

There have been many ramifications from the minimal extremally disconnected
covers of spaces. That is, to generalize extremally disconnected spaces, basically
disconnected spaces, quasi-F spaces and cloz-spaces has been introduced and their
covers have been studied by various aurthors([3], [4], [8]). In these ramifications,
minimal covers of compact spaces can be nisely characterized.

In particular, Henriksen, Vermeer and Woods ([4]) introduced the notion of
cloz-spaces and they showed that every compact space X has a minimal cloz-
cover (Ecc(X), zX). Open questions in the theory of cloz-spaces concerns with the
minimal cloz-covers of non-compact spaces and the relation between Ecc(βX) and
Ecc(X)([4]). For this problem, we have the partial answer in [6]. Indeed, it is shown
that for a weakly Lindelöff space X, X has a minimal cloz-cover (Ecc(X), zX) and
that Ecc(X) is a dense subspace of the minimal cloz-cover cover Ecc(βX) of βX.
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In this paper, we first construct a cover (L(X), cX) of a space X and show that
for any cloz-cover (Y, f) of X, there is a covering map g : Y −→ L(X) such that
cX ◦ g = f . Moreover, we show that L(X) is a cloz-space if and only if (L(X), cX)
is the minimal cloz-cover of X. Using these and the transfinite induction, we show
that every space X has the minimal cloz-cover (Ecc(X), zX). Finally, we show that
if X is a strongly zero-dimensional space, then βEcc(X) = Ecc(βX) if and only if
Ecc(X) is z#-embedded in Ecc(βX).

For the terminology, we refer to [1], [2] and [7].

2. Cloz-covers of Tychonoff Spaces

Let X be a space. It is well-known that the collection R(X) of all regular closed
sets in a space X, when partially ordered by inclusion, becomes a complete Boolean
algebra, in which the join, meet, and complementation operations are defined as
follows :
For any A ∈ R(X) and any F ⊆ R(X),∨F = clX(∪{F | F ∈ F}),∧F = clX(intX(∩{F | F ∈ F})), and

A′ = clX(X −A).
A sublattice of R(X) is a subset of R(X) that contains ∅, X and is closed under
finite joins and finite meets([7]). Let Z(X)] = {clX(intX(A)) | A is a zero-set in
X}. Then Z(X)] is a sublattice of R(X).

Recall that a map f : Y −→ X is called a covering map if it is an onto continuous,
perfect, and irreducible map([7]).

Lemma 2.1 ([6]). Let X be a dense subspace of Y .

(1) The map φ : R(Y ) −→ R(X), defined by φ(A) = A ∩ X, is a Boolean
isomorphism.

(2) Let f : Y −→ X be a covering map. Then the map ψ : R(Y ) −→ R(X),
defined by ψ(A) = f(A), is a Boolean isomorphism.

In the above lemma, the inverse map φ−1 : R(X) −→ R(Y ) of φ is given by
φ−1(B) = clY (B) (B ∈ R(X)) and the inverse map ψ−1 : R(X) −→ R(Y ) of ψ is
given by ψ−1(B) = clY (intY (f−1(B))) = clY (f−1(intX(B))) (B ∈ R(X)).

Definition 2.2. Let X be a space.

(1) A cozero-set C in X is said to be a complemented cozero-set in X if there
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is a cozero-set D in X such that C ∩D = ∅ and C ∪D is a dense subset of
X. In case, {C,D} is called a complemented pair of cozero-sets in X.

(2) Let G(X) = {clX(C) | C is a complemented cozero-set in X}.
Let X be a space and {C,D} a complemented pair of cozero-sets in X. Then

clX(C) = clX(X − D) and since clX(X − D) ∈ Z(X)#, clX(C) ∈ Z(X)#. Hence
G(X) = {A ∈ Z(X)# | A′ ∈ Z(X)#} and G(X) is a Boolean subalgebra of R(X).

Definition 2.3 ([4]). A space X is called a cloz-space if every element of G(X) is a
clopen set in X.

A space X is a cloz-space if and only if βX is a cloz-space([4]).

Definition 2.4. Let X be a space.

(1) A pair (Y, f) is called a cloz-cover of X if Y is a cloz-space and f : Y −→ X

is a covering map.
(2) A cloz-cover (Y, f) of X is called a minimal cloz-cover of X if for any cloz-

cover (Z, g) of X, there is a covering map h : Z −→ Y with f ◦ h = g.

Henriksen, Vermeer and Woods showed that every compact space X has the
minimal cloz-cover (Ecc(X), zX). Let X be a compact space, S(G(X)) the Stone-
space of G(X) and Ecc(X) the subspace {(α, x) | x ∈ ∩{A | A ∈ α}} of the product
space S(G(X)) × X. Then (Ecc(X), zX) is the minimal cloz-cover of X, where
zX((α, x)) = x([4]).

A space X is called a weakly Lindelöff space if for any open cover U of X, there
is a countable subfamily V of U such that ∪{V | V ∈ V} is dense in X.

Let X be a weakly Lindelöff space,

Ecc(X) = {(α, x) ∈ G(βX)×X | x ∈ ∩{A | A ∈ α}}
the subspace of S(G(βX))×X and zX(α, x) = x. Then (Ecc(X), zX) is the minimal
cloz-cover of X and Ecc(X) is a dense subspace of Ecc(βX)([6]).

Definition 2.5. Let X be a space and B a sublattice of the power set P (X) of X.
A B-filter α is called fixed if ∩{A | A ∈ α} 6= ∅.

Let X be a space and L(G(X)) = {α | α is a fixed G(X)-ultrafilter}. For any
A ∈ G(X), let λA = {α ∈ L(G(X)) | A ∈ α}. Then {λA | A ∈ G(X)} is a base
for closed sets of some topology on L(G(X)). Let L(X) = {(α, x) ∈ L(G(X)) ×
X | x ∈ ∩{A | A ∈ α}} be the subspace of the product space L(G(X)) × X of
L(G(X))(endowed with topology generated by {L(G(X))−λA | A ∈ G(X)}) and X.
Define a map cX : L(X) −→ X by cX(α, x) = x.
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Proposition 2.6. Let X be a space. Then there is a homeomorphism h : L(X) −→
z−1
βX(X) such that z0

βX ◦ h = cX , where z0
βX : z−1

βX(X) −→ X is the restriction and
corestriction of zβX : Ecc(βX) −→ βX with respect to z−1

βX(X) and X, respectively.

Proof. Since the map φ : R(βX) −→ R(X), defined by φ(A) = A ∩X, is a Boolean
isomorphism, the restriction and corestriction φG(βX) : G(βX) −→ G(X) of φ with
respect to G(βX) and G(X), respectively is a Boolean isomorphism. Hence for any
α ∈ L(G(X)), there is a unique αβ ∈ L(G(βX)) such that {B ∩X | B ∈ αβ} = α.
Let (α, x) ∈ L(X). Then x ∈ ∩{A | A ∈ α} and x ∈ ∩{A | A ∈ αβ}. Hence
(αβ, x) ∈ z−1

βX(X).
Define a map h : L(X) −→ z−1

βX(X) by h(α, x) = (αβ, x). Then clearly, h is
an one-to-one, onto map. Let A ∈ G(X) and U be an open set in βX. Then
clβX(A) ∈ G(βX). Let

B = [(L(G(X))− λA)× (U ∩X)] ∩ L(X)

and
C = [(L(G(βX))− λclβX(A))× U ] ∩ z−1

βX(X).

Let (α, x) ∈ B. Since α /∈ λA, αβ /∈ λclβX(A) and hence h(α, x) = (αβ, x) ∈ C. So
h(B) ⊆ C. Similarly C ⊆ h(B). Since h(B) = C, h is a homeomorphism. Clearly,
z0
βX ◦ h = cX ¤

For any covering map f : Y −→ X and a subspace S of X, the restriction and
corestriction f0 : f−1(S) −→ S of f with respect to f−1(S) and S, respectively is a
covering map([7]). Hence we have the following :

Corollary 2.7. For any space X, cX : L(X) −→ X is a covering map.

Proposition 2.8. A space X is a cloz-space if and only if cX : L(X) −→ X is a
homeomorphism.

Proof. (⇒) We will show that cX is an one-to-one map. Let (α, x) 6= (γ, y) in L(X).
Suppose that α 6= γ. Then there are A,B ∈ G(X) such that A ∈ α, B ∈ γ and
A ∧ B = ∅. Since X is a cloz-space, A ∧ B = A ∩ B = ∅. Since x ∈ A and y ∈ B,
x 6= y and cX(α, x) 6= cX(γ, y). Hence cX is an one-to-one map and since cX is a
covering map, cX is a homeomorphism.

(⇐) Suppose that X is not a cloz-space. Then there are A,B ∈ G(X) such that
A∧B = ∅ and A∩B 6= ∅. Pick x ∈ A∩B. Then α = {G ∈ G(X) | x ∈ intX(G)}∪{A}
is a G(X)-filter base and by Zorn’s lemma, there is a G(X)-ultrafilter δ such that
α ⊆ δ. Suppose that x /∈ ∩{F | F ∈ δ}. Then there is an F ∈ δ such that x /∈ F .
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Since x ∈ (X − F ) = X − clX(X − F ′) = intX(F ′), F ′ ∈ α and hence F ′ ∈ δ. Note
that F , F ′ ∈ δ and F ∧ F ′ = ∅. Since δ is a G(X)-ultrafilter, this is a contradiction.
Hence x ∈ ∩{F | F ∈ δ}.

Similarly, there is a G(X)-ultrafilter γ such that B ∈ γ and x ∈ ∩{D | D ∈ γ}.
Since (α, x) 6= (δ, x) and cX(δ, x) = cX(γ, x), cX is not one-to-one. Hence cX is not
a homeomorphism. ¤

Theorem 2.9. Let X be a space and (Y, f) a cloz-cover of X. Then there is a
covering map g : Y −→ L(X) such that cX ◦ g = f .

Proof. Let j0 : z−1
βX(X) −→ Ecc(βX) be the inclusion map. Then j = j0 ◦ h :

L(X) −→ Ecc(βX) is a dense embedding and there is a covering map fβ : βY −→
βX such that fβ ◦ βY = βX ◦ f . Since Y is a cloz-space, βY is a cloz-space and
there is a covering map k : βY −→ Ecc(βX) such that fβ = zβX ◦ k. Since
βX◦f = zβX◦k◦βY , there is a continuous map l : Y −→ z−1

βX(X) such that z0
βX◦l = f

and k ◦βY = j0 ◦ l. Since f and fβ are covering maps, fβ(βY −Y ) ⊆ βX −X and l

is an onto map, because fβ is on onto map([7]). Since z0
βX ◦ l = f is a covering map

and l is an onto map, l is a covering map. Let g = h−1 ◦ l : Y −→ L(X). Then g is
a covering map and cX ◦ g = f . ¤

Corollary 2.10. Let X be a space such that L(X) is a cloz-space. Then (L(X), cX)
is the minimal cloz-cover of X.

A space X is called an extremally disconnected space if every regular closed set
in X is open in X.

Let X be a space. Then there is an extremally disconnected space EX and a
covering map kX : EX −→ X such that for any extremally disconnected space Y

and any covering map g : Y −→ X, there is a covering map h : Y −→ EX such that
kX ◦ h = g([5]).

For any space X, (EX, kX) is called the absolute of X or the minimal extremally
disconnected cover of X.

Theorem 2.11. Every space X has the minimal cloz-cover (Ecc(X), zX).

Proof. Let L0(X) = X and z0
0 = 1X be the idetity map on X. Let α be an ordinal.

For an ordinal β with β < α, suppose that
(A) for any ordinal γ with γ ≤ β, there is a cover (Lγ(X), zγ

0 ) of X and that
(B) for any ordinals γ, δ with γ < δ ≤ β, there is covering map zδ

γ : Lδ(X) −→
Lγ(X) such that zδ

0 = zγ
0 ◦ zδ

γ .
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Let α be a non-limit ordinal. Then there is an ordinal β with α = β + 1. Let
Lα(X) = L(Lβ(X)) and zα

β = cLβ(X) : L(Lβ(X)) −→ Lβ(X). Then (A) and (B)
hold for α.

Let α be a limit ordinal. Let I = {β | β is an ordinal with β < α}. Define an
inverse limit system D : I −→ TOP as follow : for any ordinal β, γ in I with γ < β,
let D(β) = Lβ(X) and D(γ < β) = zβ

γ , where TOP is the category of topological
spaces and continuous maps. Let (Lα(X), zα

β )β<α be the inverse limit of D. Then
(A) and (B) hold for α.

By transfinite induction, (A) and (B) hold for all ordinals.
By Theorem 2.9, for any ordinal α, there is a covering map gα : EX −→ Lα(X)

such that zα
0 ◦ gα = kX . Hence for any ordinal α, Lα(X) lie between X and EX

and there is a smallest ordinal δ such that zδ+1
δ : L(Lδ(X)) −→ Lδ(X) is a home-

omorphism. Since zδ+1
δ = cLδ(X), by Proposition 2.8, Lδ(X) is a cloz-space. Let

Ecc(X) = Lδ(X) and zX = zδ
0. Then (Ecc(X), zX) is the minimal cloz-cover of

X. ¤
Let f : Y −→ X be a covering map. Then f is called a z#-irreducible map if

{f(A) | A ∈ Z(Y )#} = Z(X)#. Note that for any B ∈ Z(X)#,

clY (f−1(intX(B))) ∈ Z(Y )# and f(clY (f−1(intX(B)))) = B.

Hence f is z#-irreducible if and only if for any A ∈ Z(Y )#, f(A) ∈ Z(X)#.
A space X is called a quasi-F space if for any A, B ∈ Z(X)#, A∧B = A∩B. For

any compact space X, there is a quasi-F space QF (X) and a z#-irreducible map
ΦX : QF (X) −→ X([3]).

Let X be a space. Since every quasi-F space is a cloz-space, (QF (βX), ΦβX) is a
cloz-cover of βX and so there is a covering map mβX : QF (βX) −→ Ecc(βX) such
that zβX ◦mβX = ΦβX . Clearly, zβX and mβX are z#-irreducible, because ΦβX is
z#-irreducible. Moreover, {zβX(A) | A ∈ Z(G(βX))#} = G(βX)#.

Recall that a subspace S of a space X is called C∗-embedded (z#-embedded, resp.)
in X if for any real-valued continuous map f on S (A ∈ Z(S)#, resp.), there is a real-
valued continuous map g on X (B ∈ Z(X)#, resp.) such that g |X= f(A = B ∩ S,
resp.). Every dense C∗-embedded subspace of a space X is z#-embedded in X.

Consider the following conditions for a space X

(C1) βEcc(X) = Ecc(βX), that is, Ecc(X) is C∗-embedded in Ecc(βX)
(C2) L(X) is z#-embedded in Ecc(βX).
(C3) {zX(A) | A ∈ (G(L(X)))} = G(X).
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Proposition 2.12. Let X be a space. Then (C1) implies (C2) and (C2) implies
(C3). Moreover, if (C3) holds, then (L(X), cX) is the minimal cloz-cover of X.

Proof. (C1) (⇒) (C2) By Theorem 2.9, there is a covering map g : Ecc(X) −→ L(X)
such that cX ◦ g = zX . Note that zβX is z#-irreducible and Ecc(X) is z#-embedded
in Ecc(βX). Hence zX is z#-irreducible and cX is z#-irreducible. Since cX is z#-
irreducible, L(X) is z#-embedded in Ecc(βX).

(C2) (⇒) (C3) Let F ∈ G(L(X)). Then F , F ′ ∈ Z(L(X))# and since L(X) is
z#-embedded in Ecc(βX), there is an H ∈ G(Ecc(βX)) such that F = H ∩ L(X)
and F ′ = H ′ ∩ L(X). Since zβX is z#-irreducible, zβX(H) ∈ G(βX) and since

zX(F ) = zX(H ∩ Ecc(X)) = zβX(H) ∩X,

zX(F ) ∈ G(X). Hence {zX(A) | A ∈ G(L(X))} ⊆ G(X) and clearly, G(X) ⊆
{zX(A) | A ∈ G(L(X))}.

Suppose that (C3) holds. Let S ∈ G(L(X)). Then there is an A ∈ G(βX)# sush
that zX(S) = A ∩ X. Since zβX is z#-ireducible, there is a B ∈ G(Ecc(βX)) such
that zβX(B) = A. By Lemma 2.1, S = B ∩L(X). Since Ecc(βX) is a cloz-space, B

is a clopen set in Ecc(βX) and S = B ∩L(X) is a clpoen set in L(X). Hence L(X)
is a cloz-space. ¤

A space X is called a stonrgly zero-dimensional space if βX is a zero-dimensional
space.

Theorem 2.13. Let X be a strongly zero-dimensional space. Then βEcc(X) =
Ecc(βX) if and only if Ecc(X) is z#-embedded in Ecc(βX).

Proof. (⇐) Note that there is a continuous map f : βEcc(X) −→ βX such that
βX ◦zX = f ◦ββEcc(X). Since Ecc(X) is dense in βEcc(X) and βEcc(X) is a compact
space, f is a covering map and since βEcc(X) is a cloz-space, there is a covering
map g : βEcc(X) −→ Ecc(βX) such that zβX ◦ g = f . Since Ecc(X) is z#-embedded
in Ecc(βX), zX is z#-irreducible. Clearly, f is z#-irreducible, because βX ◦ zX =
f ◦ ββEcc(X). Since zβX ◦ g = f is z#-irreducible, g is z#-irreducible.

Take any p 6= q in βEcc(X). Since βX is a zero-dimensional space and f is
a covering map, βEcc(X) is a zero-dimensinal space([7]). Hence there is a clopen
set B in βEcc(X) such that p ∈ B and q /∈ B. Hence B ∈ G(βEcc(X)) and
g(B) ∈ G(Ecc(βX)). Since Ecc(βX) is a cloz-space, g(B) ∩ g(B′) = ∅, g(p) ∈ g(B)
and q ∈ g(B′). Since g(p) 6= g(q), g is a homeomorphism.

(⇒) It is trivial. ¤
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