DOI QR코드

DOI QR Code

DOMINATED SPLITTING WITH STABLY EXPANSIVE

  • Received : 2010.06.01
  • Accepted : 2011.09.02
  • Published : 2011.11.30

Abstract

In this paper, we show that if a transitive set ${\Lambda}$ is $C^1$-stably expansive, then ${\Lambda}$ admits a dominated splitting.

Keywords

References

  1. N. Aoki & K. Hiraide: Topological Theory of Dynamical Systems. Recent Advances. North-Holland Math. Library 52 North-Holland, Amsterdam 1994.
  2. C. Bonatti, L.J.Diaz & E. Pujals: A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Annals of Math. 158 (2003), 187-222.
  3. C. Bonatti, N. Gourmelon & T. Vivier: Perturbations of the derivative along periodic orbits. Ergodi. Th. & Dynm. Syst. 26 (2006), 1307-1337. https://doi.org/10.1017/S0143385706000253
  4. K. Lee, G. Lu & X. Wen: $C^1$-stably weak shadowing property of chain transitive sets. preprint.
  5. K. Lee & M. Lee: Hyperbolicity of $C^1$-stably expansive homoclinic classes. Disc. & Contin. Dynam. Syst. 27 (2010), 1133-1145. https://doi.org/10.3934/dcds.2010.27.1133
  6. R. Mane: Expansive diffeomorphisms. Lecture Notes in Math. 468, Springer-Verlag (1975), 162-174.
  7. R. Mane: An ergodic closing lemma. Ann. Math. 116 (1982), 503-540. https://doi.org/10.2307/2007021
  8. D. Yang: Stably weakly shadowing transiteve sets and dominated splitting. Proc. Amer. Math. Soc. 139 (2011), 2747-2751. https://doi.org/10.1090/S0002-9939-2011-10699-3