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DOMINATED SPLITTING WITH STABLY EXPANSIVE

Manseob Lee

Abstract. In this paper, we show that if a transitive set Λ is C1-stably expansive,
then Λ admits a dominated splitting.

1. Introduction

In this paper, we study dominated splitting - a weak form of hyperbolicity. More
precisely, using results of [2] and [3], we show that if a closed set have the some
property then it admits dominated splitting.

Let M be a closed C∞ manifold, and let Diff(M) be the space of diffeomorphisms
of M endowed with the C1-topology. Denote by d the distance on M induced from
a Riemannian metric ‖ · ‖ on the tangent bundle TM . Let f ∈ Diff(M), and let
Λ ⊂ M be a closed f -invariant set. We say that f |Λ is expansive if there is a
constant e > 0 such that for any pair of distinct points x, y ∈ Λ, d(fn(x), fn(y)) > e

for some n ∈ Z. Let f ∈ Diff(M), and let Λ ⊂ M ba a closed f -invariant set. We
say that Λ is locally maximal if there is a compact neighborhood U of Λ such that

⋂

n∈Z
fn(U) = Λ(U).

We say that Λ admits a dominated splitting if the tangent bundle TΛM has
a continuous Df -invariant splitting E ⊕ F and there exists constant C > 0 and
0 < λ < 1 such that

‖Dxfn|E(x)‖ · ‖Dxf−n|F (fn(x))‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0.
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The following definition is in [5].

Definition 1.1. We say that an f -invariant set Λ is C1-stably expansive if there
exists a C1-neighborhood U(f) of f and a compact neighborhood U of Λ such that:

• Λ(U) =
⋂

n∈Z fn(U),
• for any g ∈ U(f), g|Λg(U) is expansive, where Λg(U) =

⋂
n∈Z gn(U) is called

the continuation of Λ.

Let f ∈ Diff(M), and let Λ ⊂ M be a closed f -invariant set. Then we say that
Λ is called a transitive set if there exists a point x ∈ Λ such that ω(x) = Λ. Mañè
[6] studied the case in which for f ∈ Diff(M) there is a C1-neighborhood U(f) of f

such that for any g ∈ U(f), g is expansive. He proved in the case f is quasi-Anosov,
that is, for all v ∈ TM, v 6= 0, the set {Dfn(v)‖ : n ∈ Z} is bounded. Thus we can
restate the above facts are follows.

Theorem A. M is C1-stably expansive if and only if f satisfies quasi-Anosov.

In this paper, we get a problem which if a transitive set Λ is C1-stably expansive
then is Λ is hyperbolic? Unfortunately, it is not true. Indeed, for any hyperbolic
periodic points p, q ∈ Λ, we don’t know that W s(p) t W u(q) 6= φ and W u(p) t
W s(q) 6= φ. Therefore, our aim is to characterize closed sets by making use of the
C1-stably expansive property. We are now in position to state main theorem.

Theorem B. Let Λ be a transitive set. If Λ is C1-stably expansive, then Λ admits
a dominated splitting.

2. Introduction Some Results.

We use Mãné’s result which is on a uniformly family of periodic sequences of
linear maps of Rn(n = dimM). Let GL(n) be the group of linear isomorphisms of
Rn. If a sequence ξ : Z→ GL(n) is periodic if there is k > 0 such that ξj+k = ξj for
k ∈ Z. We call a finite subset A = {ξi : 0 ≤ i ≤ k − 1} ⊂ GL(n) is a periodic family
with period k. For a periodic family A = {ξi : 0 ≤ i ≤ n− 1}, we denote

CA = ξn−1 ◦ ξn−2 ◦ · · · ◦ ξ0.

Definition 2.1. We say that the periodic family A = {ξi : 0 ≤ i ≤ n− 1} admits a
l-dominated splitting, if there is a splitting Rn = E ⊕ F which satisfies:

(a) E and F are CA invariant, i.e., CA(E) = E and CA(F ) = F,

(b) For any k = 0, 1, 2, . . . ,
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‖ξk+l−1 ◦ · · · ◦ ξk+1 ◦ ξk|Ek
‖

m(ξk+l−1 ◦ · · · ◦ ξk+1 ◦ ξk|Fk
)
≤ 1

2
,

where

Ek = ξk−1 ◦ ξk−2 ◦ · · · ◦ ξ0(E)

and

Fk = ξk−1 ◦ ξk−2 ◦ · · · ◦ ξ0(F ).

We know that the following theorems for periodic family from [3].

Theorem 2.2. Given any ε > 0 and K > 0, there is n1 ≥ 0 which satisfies the
following property: given any periodic family A = {ξi : 0 ≤ i ≤ n−1} which satisfies
the period n ≥ n1 and max{‖ξi‖, ‖ξ−1

i ‖} ≤ K, for all i = 0, 1, · · · , n − 1, one can
find a periodic family B = {ζi : 0 ≤ n−1} such that max{‖ζi−ξi‖, ‖ζ−1

i −ξ−1
i ‖} < ε,

for any i = 0, 1, · · · , n− 1, and det(CA) = det(CB) and the eigenvalues of CB are all
real, multiplicity one and different moduli.

Theorem 2.3. Given any ε > 0 and K > 0, there is positive integers n2 ≥ 0 and
l ≥ 0 which satisfies the following property: given any periodic family A = {ξi :
0 ≤ i ≤ n− 1} which satisfies the period n ≥ n2 and max{‖ξi‖, ‖ξ−1

i ‖} ≤ K, for all
i = 0, 1, · · · , n−1, if A does not admits any l-dominated splitting, then one can find
a periodic family B = {ζ0, ζ1, · · · , ζn−1} such that max{‖ζi − ξi‖, ‖ζ−1

i − ξ−1
i ‖} < ε,

for any i = 0, 1, · · · , n− 1, and det(CA) = det(CB) and the eigenvalues of CB are all
real, and have same modulus.

To prove Theorem B, we need another lemma about uniformly contracting family.
Let A = {ξi : 0 ≤ i ≤ k − 1} ⊂ GL(n) be a periodic family. We say the sequence
A is uniformly contracting family if there is a constant δ > 0 such that for any
δ-perturbation of A are sink,.i.e, for any B = {ζi : 0 ≤ i ≤ k− 1} with ‖ζi− ξi‖ < δ,

all eigenvalue of CB have moduli less than 1. Similarly, we can define the uniformly
expanding periodic family. The following theorem is well known.

Theorem 2.4 ([7]). For any δ > 0 and K > 0, there are constants C > 0, 0 < λ < 1
and positive integer m such that if A = {A0, A1, . . . , An−1} is a uniformly contracting
periodic family which satisfies

max
i=0,1,...,n−1

{‖Ai‖, ‖A−1
i ‖} < K

for n > m, then
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k−1∏

j=0

∥∥∥∥∥
m−1∏

i=0

Ai+mj

∥∥∥∥∥ ≤ Cλk,

where k = [n/m].

3. Proof of Theorem B

Let M be as before, and let f ∈ Diff(M). In this section, we will use the
notation of pre-sink (resp. pre-source). A periodic point p is called a pre-sink (resp.
pre-source) if Dfπ(p)(p) has an multiplicity one eigenvalue equal to +1 or −1 and
the other eigenvalues has norm less than 1 (resp. bigger than 1).

Remark 3.1 ([1, Theorem 2.2.23 and 2.2.26]). Let f ∈ Diff(M).

• Let I be an small arc. Then f : I → I is not expansive.
• Let C be a small circle. Then f : C → C is not expansive.

Recall that if Λ is C1-stably expansive then there are a C1-neighborhood U(f) and
a compact neighborhood U of Λ such that for any g ∈ U(f), Λg(U) =

⋂
n∈Z gn(U)

is expansive for g.

Lemma 3.2. Let Λ be a closed set of f ∈ Diff(M), and let U(f) and U be as
above. If Λ is C1-stably expansive, then for any g ∈ U(f), g has neither pre-sink
nor pre-source with the orbit staying in U.

Proof. Suppose that f is C1-stably expansive on Λ. Then there are a C1-neighbor-
hood U(f) of f and a compact neighborhood U of Λ such that for any g ∈ U(f),
g is expansive on Λg(U) =

⋂
n∈Z gn(U). Assume that there is g ∈ U(f) such that g

has a pre-sink p with O(p) ⊂ U. For simplicity, we may assume p is fixed point of g

(other case is similar).
By making use of the Franks’ Lemma, we linearize g at p with respect to the

exponential coordinates expp, i.e, choose ε1 > 0 and α > 0 with Bα(p) ⊂ U and
there exists g1 C1-ε1nearby g such that

g1(x) =

{
expp ◦Dpg(p) ◦ exp−1

p (x) if x ∈ Bα(p),
g(x) if x /∈ B4α(p).

Then g1(p) = g(p) = p.
Since p is pre-sink of g, Dpg has a multiplicity one eigenvalue such that |λ| = 1 and

other eigenvalues of Dpg are with modulus less than 1. Denote by Ec
p the eigenspace

corresponding to λ, and Es
p the eigenspace corresponding to the eigenvalues with

modulus less than 1. Thus TpM = Ec
p ⊕ Es

p. Then we get two cases: λ is real or
complex.
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Case 1: λ is real. Then dimEc
p = 1. For simplicity, we suppose that λ = 1. There

is a small arc Ip ⊂ Bα(p) ∩ expp(Ec
p(α)) center at p such that g1|Ip = id, where

id is identity map. Here Ec
p(α) is the α-ball in Ec

p center at the origin Op. Clearly,
Ip ⊂ Λg1(U).

Note that for a set A ⊂ M, if M is expansive then A have to expansive. By the
definition of the C1-stably expansivity, g1|Λg1 (U) is expansive. Moreover, by Remark
3.1, g1|Ip is not expansive. This is a contradiction. Therefore, if Λ is C1-stably
expansive of f then it does not have pre-sink.

Case 2: λ is complex. Then dimEc
p = 2. Since the eigenvalue λ is complex, there is

a small circle Cp ⊂ Bα(p) ∩ expp(Ec
p(α)) center at p such that g1|Cp is conjugate to

an irrational rotation map. Here Ec
p(α) is the α-ball in Ec

p center at the origin Op.

Clearly, Cp ⊂ Λg1(U). Thus by the notion of C1-stably expansivity, g1|Cp has to be
expansive. Again by Remark 3.1, the rotation map g1 : Cp → Cp is not expansive.
This is a contradiction.

Therefore, if Λ is C1-stably expansive of f then it does not have pre-sink. Simi-
larly, f does not have pre-source. ¤

The following lemma is well known result. In fact, we make using the C1-closing
lemma and property of transitive set. Hereafter, we consider transitive sets is non-
trival, that is, the set is not one orbit.

Lemma 3.3 ([8]). Let Λ be a transitive set. There exist a sequence {gn}n∈N of
diffeomorphism and a periodic orbit Pn of gn with period π(Pn) → ∞ as n → ∞
such that gn → f in the C1-topology and lim HPn = Λ, where limH is the Hausdorff
limit and π(Pn) is the period of Pn.

From Lemma 3.3, we can choose pn ∈ Pn such that we get a periodic family
An = {Dpnf, Df(pn)f, . . . , Dfπ(pn)−1(pn)f}.
Lemma 3.4 ([4]). Let Λ, Pn be as in Lemma 3.3, and An be given as above. Then
for any ε > 0 there exists an integer n0(ε) > 0 such that for any n > n0(ε),An is
neither ε-uniformly contracting nor ε-uniformly expanding.

Let U0(f) be given by Lemma 3.2, and let g ∈ U0(f). We consider the periodic
family of linear maps A = {Dpg : for any p ∈ P (g) ∩ Λg(U)}. Let B = {ξp :
for any p ∈ P (g) ∩Λg(U)} be a family of periodic sequence of linear maps closed to
A, and for any p ∈ P (g) ∩ Λg(U), consider the linear map

CB = ξgπ(p)−1(p) ◦ · · · ◦ ξp,
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and denote by λs(CB), λu(CB) its eigenvalues. Here ξgi(p) is a linear map nearby
Dgi(p)g for 0 ≤ i ≤ π(p)− 1 and |λs(CB)| ≤ |λu(CB)|.
Lemma 3.5 ([4]). Let Λ, Pn be as in Lemma 3.3. Then for any ε > 0 there are
n(ε), l(ε) > 0 such that for any n > n(ε) if Pn does not admits a l(ε) dominated
splitting, then choose g C1-nearby f and preserving the orbit of Pn such that Pn is
pre-sink or pre-source respecting g.

From Lemma 3.2 and Lemma 3.5, we can get the following Proposition 3.6.

Proposition 3.6. Let Λ be a transitive set. Then if Λ is C1-stably expansive, then
we can choose N, l > 0 such that for any n > N, Pn admits a l-dominated splitting.

Proof. Let Λ be a transitive set. Suppose that Λ is C1-stably expansive. Then by
Franks’ Lemma, and by the notion of the C1-stably expansivity, there are a C1-
neighborhood U(f) of f and a compact neighborhood U of Λ such that for any
g ∈ U0(f) ⊂ U(f), g|Λg(U) is expansive. By Lemma 3.2, g has neither pre-sink nor
pre-source. And, by Lemma 3.5, Pn is neither pre-sink nor pre-source respecting g.
Therefore, by Lemma 3.5, Pn admits a l-dominated splitting. ¤

By Proposition 3.6 and the following proposition, we directly obtain Theorem B.

Proposition 3.7 ([2]). Let gn convergent to f and if Λgn be a closed gn-invariant
set of gn and limΛgn = Λ. Then if Λgn admits a l-dominated splitting respecting gn,

then Λ admits a l-dominated splitting respecting f.

End of proof of Theorem B. Let Λ be a transitive set of f ∈ Diff(M). Then by
Lemma 3.3, there exists a sequence {gn}n∈Z of diffeomorphism and a periodic orbit
Pn of gn such that gn → f in the C1-topology and Pn → Λ in the Hausdorff limit.
By Proposition 3.6, Pn admits a l-dominated splitting. Thus by Proposition 3.7, Λ
admits a l-dominated splitting. ¤
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