Noninformative priors for the common mean in log-normal distributions

  • Kang, Sang-Gil (Department of Computer and Data Information, Sangji University)
  • Received : 2011.09.30
  • Accepted : 2011.11.05
  • Published : 2011.12.01

Abstract

In this paper, we develop noninformative priors for the log-normal distributions when the parameter of interest is the common mean. We developed Jeffreys' prior, th reference priors and the first order matching priors. It turns out that the reference prior and Jeffreys' prior do not satisfy a first order matching criterion, and Jeffreys' pri the reference prior and the first order matching prior are different. Some simulation study is performed and a real example is given.

Keywords

References

  1. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  2. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  3. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
  4. Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
  5. Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
  6. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University, Oxford, 195-210.
  7. Gupta, R. C. and Li, X. (2006). Statistical inference for the common mean of two log-normal distributions and some applications in reliability. Computational Statistics and Data Analysis, 50, 3141-3164. https://doi.org/10.1016/j.csda.2005.05.005
  8. Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Noninformative priors for the common mean of several inverse Gaussian populations. Journal of Korean Data & Information Science Society, 19, 401-411.
  9. Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Noninformative priors for stress-strength reliability in the Pareto distributions. Journal of Korean Data & Information Science Society, 22, 115-123.
  10. Kim, D. H., Kang, S. G. and Lee, W. D. (2009a). An objective Bayesian analysis for multiple step stress accelerated life tests. Journal of Korean Data & Information Science Society, 20, 601-614.
  11. Kim, D. H., Kang, S. G. and Lee, W. D. (2009b). Noninformative priors for Pareto distribution. Journal of Korean Data & Information Science Society, 20, 1213-1223.
  12. Limport, E., Stahel, W. A. and Abbt, M. (2001). Log-normal distributions across the science: Keys and clues. BioScience, 51, 341-352. https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
  13. Longford, N. T. and Pittau, M. G. (2006). Stability of household income in European countries in the 1990s. Computational Statistics and Data Analysis, 51, 1364-1383. https://doi.org/10.1016/j.csda.2006.02.011
  14. Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
  15. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  16. Parkhurst, D. F. (1998). Arithmetic versus geometric means for environmental concentration data. Environmental Science and Technology, 88, 92A-98A.
  17. Rappaport, S. M. and Selvin, S. (1987). A method for evaluating the mean exposure from a lognormal distribution. American Industrial Hygiene Journal, 48, 374-379. https://doi.org/10.1080/15298668791384896
  18. Stein, C. (1985). On the coverage probability of confience sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
  19. Tian, L. and Wu, J. (2007). Inferences on the common mean of several log-normal populations: The generalized variable approach. Biometrical Journal, 49, 944-951. https://doi.org/10.1002/bimj.200710391
  20. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  21. Welch, B. L. and Peers, H. W. (1963). On formulae for confience points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.
  22. Wu, J., Jiang, G., Wong, A. C. M. and Sun, X. (2002). Likelihood analysis for the ratio of means of two independent log-normal distributions. Biometrics, 58, 463-469. https://doi.org/10.1111/j.0006-341X.2002.00463.x
  23. Zabel, J. (1999). Controlling for quality in house price indices. The Journal of Real Estate Finance and Economics, 13, 223-241.
  24. Zhou, X. H., Gao, S. and Hui, S. L. (1997). Methods for comparing the means of two independent log-normal samples. Biometrics, 53, 1127-1135.