Endocrine Disruption by Alkylphenols in Amphibians

알킬페놀류 화합물의 양서류 내분비계장애 효과

  • Ahn, Hae-Sun (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Park, Chan-Jin (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Ahn, Hyo-Min (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Gye, Myung-Chan (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 안혜선 (한양대학교 자연과학대학 생명과학과) ;
  • 박찬진 (한양대학교 자연과학대학 생명과학과) ;
  • 안효민 (한양대학교 자연과학대학 생명과학과) ;
  • 계명찬 (한양대학교 자연과학대학 생명과학과)
  • Received : 2011.01.25
  • Accepted : 2011.02.15
  • Published : 2011.02.28

Abstract

Amphibian population declines globally. Aquatic contamination by organic pollutants including endocrine disrupters has been suspected to the one of the reason for distinction of amphibia which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guideline for important EDs in aquatic media. Alkylphenols have been widely used in agricultural, industrial, and housekeeping activities, contaminating the aquatic media and evoking endocrine disruption in aquatic animals. In this review, we summarized data concerning the endocrine disruption by alkylphenol organic pollutants on amphibians according to route, concentration, terms, and developmental stage of exposure together with mechanism of endocrine disruption.

지구적으로 양서류가 감소하고 있다. 수정 후 변태에 이르는 생활사를 수중에서 진행하는 양서류는 수환경 내의 오염물질에 1차적으로 노출되며 독성효과에 대한 감수성이 높아 수환경의 오염에 특히 취약하다. 양서류는 수서생태계의 건강도 지표로서 유용할 뿐 아니라 배아 또는 유생에서 분자 및 개체수준의 다양한 생체지표를 이용한 내분비계장애물질을 비롯한 다양한 환경오염물질의 독성평가 모델로서도 유용하다. 양서류에서 얻어진 독성자료는 수환경 오염물질의 관리와 안전관리기준의 설정에 활발히 이용되고 있다. 다양한 알킬페놀류 화합물이 농업, 공업, 가정활동에 사용되고 있으며, 수환경 내에 잔류한다. 이들은 다양한 수생동물에서 내분비계장애 효과를 갖는 것으로 알려졌다. 본 소고에서는 양서류의 배아, 유생을 대상으로 알킬페놀류 화합물의 종류별, 노출경로 및 농도, 노출기간 및 발생단계 등에 따른 내분비계장애효과와 그 기작에 관한 국내외 자료를 정리하였다.

Keywords

References

  1. 계명찬, 이명식, 강희정, 정경아, 안혜선. 2004. 무당개구리 비텔로제닌 유전자의 발현의 RT-PCR 검출법. 환경생물.22:329-335.
  2. 계명찬, 한명수. 2000. 척추동물의 난황형성과 환경에스트로젠. 환경생물. 18:291-298.
  3. 김호승, 계명찬, 2003. 프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구. 환경생물. 21:87-100.
  4. 최영주, 윤춘식, 박주홍, 진정효, 정선우. 2002. 한국산 도롱뇽 (Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성 효과. 한국육수학회지. 35:198-212.
  5. 환경부. 2001. 내분비계장애물질에 의한 생태영향조사.
  6. Bevan CL, DM Porter, A Prasad, MJ Howard and LP Henderson. 2003. Environmental estrogens alter early development in Xenopus laevis. Environ. Health Perspect. 111:88-96. https://doi.org/10.1289/ehp.111-a88
  7. Blaustein AR and DB Wake. 1995. The puzzle of declining amphibian populations. Sci. Am. 272:52-57.
  8. Bogi C, G Levy, I Lutz and W Kloas. 2002. Functional genomics and sexual differentiation in amphibians. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133:559-570. https://doi.org/10.1016/S1096-4959(02)00162-8
  9. Bögi C, J Schwaiger, H Ferling, U Mallow, C Steineck, F Sinowatz, W Kalbfus, RD Negele, I Lutz and W Kloas. 2003. Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ. Res. 93:195-201. https://doi.org/10.1016/S0013-9351(03)00082-3
  10. Boyer R and CE Grue. 1995. The need for water quality criteria for frogs. Environ. Health Perspect. 103:352-357. https://doi.org/10.1289/ehp.95103352
  11. Carey C and CJ Bryant. 1995. Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ. Health Perspect. 103 Suppl 4:13-17.
  12. Chang CY and E Witschi. 1956. Genetic control and hormonal reversal of sex differentiation in Xenopus. Proc. Soc. Exp. Biol. 93:140-144. https://doi.org/10.3181/00379727-93-22688
  13. Christensen JR, JS Richardson, CA Bishop, B Pauli and J Elliott. 2005. Effects of nonylphenol on rates of tail resorption and metamorphosis in Rana catesbeiana tadpoles. J. Toxicol. Environ. Health A. 68:557-572. https://doi.org/10.1080/15287390590909698
  14. Colborn T and C Clement. 1992. Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/ Human Connection. Princeton Scientific Publishing, Princeton.
  15. Croteau MC, M Davidson, P Duarte-Guterman, M Wade, JT Popesku, S Wiens, DR Lean and VL Trudeau. 2009. Assessment of thyroid system disruption in Rana pipiens tadpoles chronically exposed to UVB radiation and 4-tert-octylphenol. Aquat. Toxicol. 95:81-92. https://doi.org/10.1016/j.aquatox.2009.05.013
  16. Goleman WL, JA Carr and TA Anderson. 2002. Environmentally relevant concentrations of ammonium perchlorate inhibit thyroid function and alter sex ratios in developing Xenopus laevis. Environ. Toxicol. Chem. 21:590-597. https://doi.org/10.1002/etc.5620210318
  17. Gye MC and DH Kim. 2005. Bisphenol A induces hepatic vitellogenin mRNA in male Bombina orientalis. Bull. Environ. Contam. Toxicol. 75:1-6. https://doi.org/10.1007/s00128-005-0710-3
  18. Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2002a. Herbicides: feminization of male frogs in the wild. Nature 419:895-896. https://doi.org/10.1038/419895a
  19. Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2003. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ. Health Perspect. 111:568-575.
  20. Hayes TB, A Collins, M Lee, M Mendoza, N Noriega, AA Stuart and A Vonk. 2002b. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Nat. Acad. Sci. 99:5476-5479. https://doi.org/10.1073/pnas.082121499
  21. Heimeier RA, B Das, DR Buchholz and YB Shi. 2009. The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology 150:2964-2973. https://doi.org/10.1210/en.2008-1503
  22. Helleday T, KL Tuominen, A Bergman and D Jenssen. 1999. Brominated flame retardants induce intragenic recombination in mammalian cells. Mutation Research 439:137-147. https://doi.org/10.1016/S1383-5718(98)00186-7
  23. Herbener GH. 1989. Use of the protein A-gold immunocytochemical and enzyme-gold cytochemical techniques in studies of vitellogenesis. Am. J. Anat. 185:244-254. https://doi.org/10.1002/aja.1001850217
  24. Herbener GH, RC Feldhoff and ML Fonda. 1983. A correlated morphometric and biochemical study of estrogen-induced vitellogenesis in male Rana pipiens. J. Ultrastruct. Res. 83:28-42. https://doi.org/10.1016/S0022-5320(83)90062-X
  25. Herrmann T, M Ball, K Rothenbacher and M Wesselmann. 2003. Emissions of tetrabromobisphenol A from computer monitors. Organohalogen Compounds 61:259-262.
  26. Hinther A, D Domanski, S Vawda and CC Helbing. 2010. Cfin: a cultured frog tadpole tail fin biopsy approach for detection of thyroid hormone-disrupting chemicals. Environ. Toxicol. Chem. 29:380-388. https://doi.org/10.1002/etc.44
  27. Houlahan JE, CS Findlay, BR Schmidt, AH Meyer and SL Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404:752-755. https://doi.org/10.1038/35008052
  28. Ikeda Y, W Shen, HA Ingraham and KL Parker. 1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8:654-662. https://doi.org/10.1210/me.8.5.654
  29. Ishihara A, N Nishiyama, S Sugiyama and K Yamauchi. 2003. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen. Comp. Endocrinol. 134:36-43. https://doi.org/10.1016/S0016-6480(03)00197-7
  30. Iwamuro S, M Sakakibara, M Terao, A Ozawa, C Kurobe, T Shigeura, M Kato and S Kikuyama. 2003. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133:189-198. https://doi.org/10.1016/S0016-6480(03)00188-6
  31. Iwamuro S, M Yamada, M Kato and S Kikuyama. 2006. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and downregulation of retinoid X receptor gamma in Xenopus tail culture. Life Sci. 79:2165-2171. https://doi.org/10.1016/j.lfs.2006.07.013
  32. Kaneko M, R Okada, K Yamamoto, M Nakamura, G Mosconi, AM Polzonetti-Magni and S Kikuyama. 2008. Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen. Comp. Endocrinol. 155:574-580. https://doi.org/10.1016/j.ygcen.2007.09.009
  33. Kang HS, JS Noh and MC Gye. 2006. Effect of nonylphenol on the expression of hepatic vitellogenin mRNA in male Bombina orientalis (Boulenger). Bull. Environ. Contam. Toxicol. 77:15-20. https://doi.org/10.1007/s00128-006-1026-7
  34. Kitamura S, T Kato, M Iida, N Jinno, T Suzuki, S Ohta, N Fujimoto, H Hanada, K Kashiwagi and A Kashiwagi. 2005. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci. 76:1589-1601. https://doi.org/10.1016/j.lfs.2004.08.030
  35. Kloas W. 2002. Amphibians as a model for the study of endocrine disruptors. Int. Rev. Cytol. 216:1-57.
  36. Kloas W and I Lutz. 2006. Amphibians as model to study endocrine disrupters. J. Chromatogr. A. 1130:16-27. https://doi.org/10.1016/j.chroma.2006.04.001
  37. Kloas W, I Lutz and R Einspanier. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci. Total Environ. 225:59-68. https://doi.org/10.1016/S0048-9697(99)80017-5
  38. Knudsen FR and TG Pottinger. 1999. Interaction of endocrine disrupting chemicals, singly and in combination, with estrogen-, androgen-, and corticosteroid-binding sites in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 44:159- 170.
  39. Kohno S, M Fujime, Y Kamishima and T Iguchi. 2004. Sexually dimorphic basal water absorption at the isolated pelvic patch of Japanese tree frog, Hyla japonica. J. Exp. Zool. A Comp. Exp. Biol. 301:428-438.
  40. Lahr J. 1997. Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions. Arch. Environ. Contam. Toxicol. 32:50-57. https://doi.org/10.1007/s002449900154
  41. Lee KM, W Yang, JS Rhee, DS Hwang, CJ Park, MC Gye, JS Lee and I Shin. 2010. Effects of endocrine disruptors on Bombina orientalis P450 aromatase activity. Zoolog. Sci. 27:338-343. https://doi.org/10.2108/zsj.27.338
  42. Loeffler IK, DL Stocum, JF Fallon and CU Meteyer. 2001. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs. Anat. Rec. 265:228-245. https://doi.org/10.1002/ar.10009
  43. Lutz I and W Kloas. 1999. Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci. Total Environ. 225:49-57.
  44. Mann RM and JR Bidwell. 2000. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat. Toxicol. 51:19-29. https://doi.org/10.1016/S0166-445X(00)00106-5
  45. Mann RM and JR Bidwell. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ. Pollut. 114:195-205. https://doi.org/10.1016/S0269-7491(00)00216-5
  46. Matsumura N, H Ishibashi, M Hirano, Y Nagao, N Watanabe, H Shiratsuchi, T Kai, T Nishimura, A Kashiwagi and K Arizono. 2005. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol. Pharm. Bull. 28:1748-1751. https://doi.org/10.1248/bpb.28.1748
  47. Mayer LP, CA Dyer and CR Propper. 2003. Exposure to 4-tertoctylphenol accelerates sexual differentiation and disrupts expression of steroidogenic factor 1 in developing bullfrogs. Environ. Health Perspect. 111:557-561.
  48. McLachlan JA. 2001. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev. 22:319-341. https://doi.org/10.1210/er.22.3.319
  49. Mitsui N, O Tooi and A Kawahara. 2007. Vitellogenin-inducing activities of natural, synthetic, and environmental estrogens in primary cultured Xenopus laevis hepatocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146:581-587. https://doi.org/10.1016/j.cbpc.2007.07.004
  50. Mommsen TP and PJ Walsh. 1988. Vitellogenesis and oocyte assembly. pp.347-406. In Fish Physiology (Hoar WS and DJ Randall eds.). vol. 11. Academic Press, New York.
  51. Mosconi G, O Carnevali, MF Franzoni, E Cottone, I Lutz, W Kloas, K Yamamoto, S Kikuyama and AM Polzonetti- Magni. 2002. Environmental estrogens and reproductive biology in amphibians. Gen. Comp. Endocrinol. 126:125-129. https://doi.org/10.1006/gcen.2002.7781
  52. OECD, 2009 OECD, Test No. 231: Amphibian Metamorphosis Assay, OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. (OECD ed.) OECD Publishing.
  53. Ohtani H, I Miura and Y Ichikawa. 2000. Effects of dibutyl phthalate as an environmental endocrine disrupter on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ. Health Perspect. 108:1189-1193. https://doi.org/10.1289/ehp.001081189
  54. Opitz R and W Kloas. 2010. Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles. Gen. Comp. Endocrinol. 168:199-208. https://doi.org/10.1016/j.ygcen.2010.04.013
  55. Opitz R, S Hartmann, T Blank, T Braunbeck, I Lutz and W Kloas. 2006. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicol. Sci. 90:337-348. https://doi.org/10.1093/toxsci/kfj083
  56. Palmer BD and SK Palmer. 1995. Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog. Environ. Health Perspect. 103 Suppl 4:19-25. https://doi.org/10.1289/ehp.95103s419
  57. Park CJ, HS Kang and MC Gye. 2010. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3′- triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81:1292-1300. https://doi.org/10.1016/j.chemosphere.2010.08.039
  58. Pickford DB, MJ Hetheridge, JE Caunter, AT Hall and TH Hutchinson. 2003. Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223-235. https://doi.org/10.1016/S0045-6535(03)00308-4
  59. Plotner J and R Gunther. 1987. Toxicity of an anionic detergent to the spawn and larvae of anurans (Amphibia). Int. Rev. Ges. Hydrobiol. 72:759-771. https://doi.org/10.1002/iroh.19870720610
  60. Presutti C, C Vismara, M Camatini and G Bernardini. 1994. Ecotoxicological effects of a nonionic detergent (Triton DF- 16) assayed by ModFETAX. Bull. Environ. Contam. Toxicol. 53:405-411.
  61. Reeder AL, GL Foley, DK Nichols, LG Hansen, B Wikoff, S Faeh, J Eisold, MB Wheeler, R Warner, JE Murphy and VR Beasley. 1998. Forms and prevalence of intersexuality and effects of environmental contaminants on exuality in cricket frogs (Acris crepitans). Environ. Health Perspect. 106:261- 266. https://doi.org/10.1289/ehp.98106261
  62. Sellstrㅐm U and B Jansson. 1995. analysis of tetrabromophenol A in a priduct and environmental samples. Chemosphere 31:3085-3092. https://doi.org/10.1016/0045-6535(95)00167-7
  63. van Wyk JH, EJ Pool and AJ Leslie. 2003. The effects of antiandrogenic and estrogenic disrupting contaminants on breeding gland (nuptial pad) morphology, plasma testosterone levels, and plasma vitellogenin levels in male Xenopus laevis (African clawed frog). Arch. Environ. Contam. Toxicol. 44:247-256. https://doi.org/10.1007/s00244-002-1161-z
  64. Watanabe I, T Kashimoto and R Tatslukawa. 1983. Indetification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka. Bull. Environ. Contam. Toxicol. 31:48-52. https://doi.org/10.1007/BF01608765
  65. Wu B, T Ford, JD Gu, XX Zhang, AM Li and SP Cheng. 2010. Computational studies of interactions between endocrine disrupting chemicals and androgen receptor of different vertebrate species. Chemosphere 80:535-541. https://doi.org/10.1016/j.chemosphere.2010.04.043
  66. Wu F, S Khan, Q Wu, R Barhoumi, R Burghardt and S Safe. 2008. Ligand structure-dependent activation of estrogen receptor alpha/Sp by estrogens and xenoestrogens. J. Steroid Biochem. Mol. Biol. 110:104-115. https://doi.org/10.1016/j.jsbmb.2008.02.008
  67. Yamauchi K, A Ishihara, H Fukazawa and Y Terao. 2003. Competitive interactions of chlorinated phenol compounds with 3,3′,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol. Appl. Pharmacol. 187:110-117. https://doi.org/10.1016/S0041-008X(02)00045-5
  68. Yang FX, Y Xu and S Wen. 2005. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p,p′-DDE on Rana nigromaculata tadpoles. Bull. Environ. Contam. Toxicol. 75: 1168-1175. https://doi.org/10.1007/s00128-005-0872-z
  69. Zhang F, SJ Degitz, GW Holcombe, PA Kosian, J Tietge, N Veldhoen and CC Helbing. 2006. Evaluation of gene expression endpoints in the context of a Xenopus laevis metamorphosis- based bioassay to detect thyroid hormone disruptors. Aquat. Toxicol. 76:24-36. https://doi.org/10.1016/j.aquatox.2005.09.003