Acknowledgement
Supported by : Korea Research Foundation
References
- A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968) 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988).
- V. Girault, and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag (1986).
- J.L. Guermond, P. Minev, and Jie Shen. An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), 6011-6045. https://doi.org/10.1016/j.cma.2005.10.010
- J.L. Guermond and J. Shen On the error estimates of rotational pressure-correction projection methods, Math. Comp., 73 (2004), 1719-1737.
- J.G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. https://doi.org/10.1137/0719018
- R.B. Kellogg and J.E. Osborn, A regularity result for the stokes problems in a convex polygon, J. Funct. Anal., 21 (1976), 397-431. https://doi.org/10.1016/0022-1236(76)90035-5
- R.H. Nochetto and J.-H. Pyo, Error estimates for semi-discrete gauge methods for the Navier- Stokes equations, Math. Comp., 74, (2005), 521-542.
- R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part I : the Navier-Stokes equations, SIAM J. Numer. Anal., 43, (2005), 1043-1068. https://doi.org/10.1137/040609756
- R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part II : Boussinesq Equations, Math. Models Methods Appl. Sci., 16, (2006), 1599-1626. https://doi.org/10.1142/S0218202506001649
- A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier- Stokes Equations, B.G.Teubner Stuttgart (1997).
- J.-H. Pyo, Error estimates for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier-Stokes equations, to appear.
- J.-H. Pyo and J. Shen, Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B, 5, (2005), 817-840. https://doi.org/10.3934/dcdsb.2005.5.817
- J.-H. Pyo and J. Shen, Gauge Uzawa methods for incompressible flows with Variable Density, J. Comput. Phys., 211, (2007), 181-197.
- R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II, Arch. Rational Mech. Anal., 33 (1969), 377-385.
Cited by
- A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS vol.22, pp.4, 2011, https://doi.org/10.11568/kjm.2014.22.4.645