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ABSTRACT. The Gauge-Uzawa method [GUM] in [9] which is a projection type al-
gorithm to solve evolution Navier-Stokes equations has many advantages and supe-
rior performance. But this method has been studied for backward Euler time discrete
scheme which is the first order technique, because the classical second order GUM re-
quests rather strong stability condition. Recently, the second order time discrete GUM
was modified to be unconditionally stable and estimated errors in [12]. In this paper,
we contemplate several GUMs which can be derived by the same manner within [12],
and we dig out properties of them for both stability and accuracy. In addition, we
evaluate an stability condition for the classical GUM to construct an adaptive GUM
for time to make free from strong stability condition of the classical GUM.

1. INTRODUCTION AND THE FIRST ORDER GAUGE-UZAWA METHOD

Given an open bounded polyhedral domain Ω in Rd, with d = 2 or 3, we consider
the time-dependent Navier-Stokes Equations of incompressible fluids:

ut + (u · ∇)u+∇p− µ△u = f , in Ω,

∇· u = 0, in Ω,

u(0,x) = u0, in Ω,

(1.1)

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-value∫
Ω
p = 0. The primitive variables are the (vector) velocity u and the (scalar) pressure

p. The viscosity µ = Re−1 is the reciprocal of the Reynolds number Re. Hereafter,
vectors are denoted in boldface.
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The coupling of pressure p and velocity u in the momentum equation is responsi-
ble for compatibility conditions between the spaces for u and p, characterized by the
celebrated inf-sup condition, and associated numerical difficulties [3]. In the late 60’s,
projection methods which are decoupling methods and to reduce the computational
cost were introduced independently by Chorin [1] and Temam [15]. And the methods
quickly gained popularity in the computational fluid dynamics community, and over
the years, an enormous amount of efforts have been devoted to develop more accu-
rate and efficient projection type schemes, we refer to [11, 4] for comprehensive and
up-to-date review on this subject.

The first order Gauge-Uzawa method [GUM] has been constructed in [9] to solve
(1.1) and enhanced in [10, 14] to solve more complicated problems which are the
Boussinesq equations and the non-constant density fluid problems. The first order
GUM to solve Navier-Stokes equations in [9] can be summarized as

Algorithm 1 (The first order Gauge-Uzawa Method). Set ϕ0 = 0 and s0 = 0 and
repeat for 1 ≤ n ≤ N = [T

τ
− 1].

Step 1: Find ûn+1 as the solution of
ûn+1 − un

τ
+ (un · ∇) ûn+1 + µsn − µ△ûn+1 = f(tn+1),

ûn+1|Γ = 0.

Step 2: Find ϕn+1 as the solution of

−△ϕn+1 = ∇· ûn+1,

∂νννϕ
n+1|Γ = 0.

Step 3: Update un+1 and sn+1 by

un+1 = ûn+1 +∇ϕn+1,

sn+1 = sn −∇ · ûn+1.

Pressure: Compute pressure whenever necessary as

pn+1 = −ϕ
n+1

τ
+ µ△ϕn+1. (1.2)

It is proved in [9] that the Algorithm 1 is unconditionally stable and hold error
bounds

τ

N∑
n=1

(∥∥u(tn+1)− un+1
∥∥2

0
+
∥∥u(tn+1)− ûn+1

∥∥2

0

)
≤ Cτ 2,

τ

N∑
n=1

(∥∥u(tn+1)− ûn+1
∥∥2

1
+
∥∥p(tn+1)− pn+1

∥∥2

0

)
≤ Cτ.
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We has been concentrated to extend GUM to the second order scheme using the second
order backward Euler formula [BDF2]. In [13], we evaluate the normal mode solutions
for several projection methods and then conclude that GUM with BDF2 is more ac-
curate algorithm than any other projection methods. But we couldn’t prove stability
condition and evaluate errors via energy estimate for the classical GUM. Recently, an
unconditionally stable GUM has been constructed without loss consistency to (1.1)
and analyzed errors by energy estimate in [12]. Also they proved that the new GUM is
equivalent to the rotational form of pressure correction method in [5]. The errors have
been evaluated in [5] for the Stokes equations and it is extended to the Navier-Stokes
equations in[12]. The new GUM in [12] modifies the pressure equation to be able to
evaluate errors, but the numerical accuracy of the method is not better than the clas-
sical GUM. Both GUMs consist to (1.1) and have same origin, but they have totally
different numerical behavior. So we are interested in other definitions for the pressure
equation. In this paper, we will introduce 3 different GUMs by imposing reasonable
and representative pressure equations (2.4), (2.5), and (2.6) below and perform numer-
ical tests to find out properties of them. In addition, we prove an stability constraint for
the classical GUM to construct an adaptive GUM for time which is called θ scheme .

We now define notations. Let Hs(Ω) be the Sobolev space with s derivatives in
L2(Ω), L2(Ω) = (L2(Ω))

d and Hs(Ω) = (Hs(Ω))d, where d = 2, 3. Let ∥·∥0 denote
the L2(Ω) norm, and ⟨· , ·⟩ the corresponding inner product. Let ∥·∥s denote the norm
of Hs(Ω) for s ∈ R.

This paper is organized as follows. We introduce the BDF2 GUMs and discuss about
properties of them in §2. We also introduce θ scheme for Navier-Stokes equations in
§3 to the classical GUM. We perform stability proof in §4. We finally conclude in §5
with numerical tests.

2. THE SECOND ORDER GAUGE-UZAWA ALGORITHMS AND STABILIZATIONS

In this section, we consider 3 GUMs and discuss about advantages and disadvan-
tages of them. Because GUM imposing BDF2 has been introduced in [13, 12], we will
reconstruct briefly from BDF2 time discrete Stokes equations:

3un+1 − 4un + un−1

2τ
+∇pn+1 − µun+1 = f(tn+1). (2.1)

We introduce 2 artificial variables ûn+1 and ϕn+1 satisfying

ûn+1 = un+1 −∇
(
ϕn+1 − 2ϕn + ϕn−1

)
. (2.2)
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Inserting (2.2) into (2.1) yields

3ûn+1 − 4un + un−1

2τ
+∇pn+1 − µûn+1

+∇
(
3ϕn+1 − 6ϕn + 3ϕn−1

2τ
− µ△

(
ϕn+1 − 2ϕn + ϕn−1

))
= f(tn+1).

(2.3)

In order to end derive GUM, we have to define pressure equation to split (2.3) to 2
decoupled equations. Because the performance of GUM depends sensitively on the
definition, we consider 3 reasonable and representative pressure equations:
• the classical GUM uses

3ϕn+1 − 4ϕn + ϕn−1

2τ
− µ△ϕn+1 = −pn+1 (2.4)

• the stabilized GUM hires
3ϕn+1 − 3ϕn

2τ
− µ△

(
ϕn+1 − ϕn

)
= −pn+1 (2.5)

• the 2nd order extrapolate pressure GUM imposes

3ϕn+1

2τ
− µ△ϕn+1 = −pn+1 (2.6)

If we impose (2.4), then (2.3) becomes

3ûn+1 − 4un + un−1

2τ
−∇

(
ϕn − ϕn−1

τ
− µ△

(
2ϕn − ϕn−1

))
−µ△ûn+1 = f(tn+1).

(2.7)

In light of ∇ · un+1 = 0, (2.2) leads us

−△ϕn+1 = −2△ϕn +△ϕn−1 +∇ · ûn+1.

To deal with the third order term ∇△ϕn, which is a source of trouble due to lack
of commutativity of the differential operators at the discrete level, we introduce the
variable sn+1 = △ϕn+1 and then

sn+1 = 2sn − sn−1 −∇ · ûn+1.

We now added up convection term in (2.7) with using the second order extrapolate
technique u∗ = 2un − un−1 . Also we can use any other suitable higher order tech-
nique. Finally, we arrive at the second order GUM via gathering above equations.

Algorithm 2 (The classical second order Gauge-Uzawa Method). Set u1, ϕ1, and
s1 using the first-order GUM Algorithm 1. Repeat for 1 ≤ n ≤ N = [T

τ
− 1].
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Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of

3ûn+1 − 4un + un−1

2τ
−∇

(
ϕn − ϕn−1

τ
− µ

(
2sn − sn−1

))
+(u∗ · ∇)ûn+1 − µ△ûn+1 = f(tn+1),

ûn+1|Γ = 0.

(2.8)

Step 2: Find ϕn+1 as the solution of

−△ϕn+1 = −△
(
2ϕn − ϕn−1

)
+∇ · ûn+1,

∂νννϕ
n+1|Γ = 0.

(2.9)

Step 3: Update un+1 and sn+1 by

un+1 = ûn+1 +∇
(
ϕn+1 − 2ϕn + ϕn−1

)
,

sn+1 = 2sn − sn−1 −∇ · ûn+1.
(2.10)

Pressure: Compute pressure whenever necessary as

pn+1 = −3ϕn+1 − 4ϕn + ϕn−1

2τ
+ µsn+1. (2.11)

Remark 2.1 (The initial setting for Algorithm 2). In the classical GUM Algorithm
2, the pressure equation (2.11) is the BDF2 time discrete scheme of the heat equation,
which has the same form as the pressure equation (1.2) in the first order GUM Algo-
rithm 1. It means that Algorithms 1 and 2 consist each other. So one natural way to
set initial values at t1 to launch Algorithm 2 by using Algorithm 1.

The errors of Algorithm 2 decay fully second order rate in the numerical tests in §5,
but this method suffers from weak stability. We will prove the following theorem in
§4.

Theorem 1 (Stability of Algorithm 2). If τ is small enough to hold

τµ2∥∇sn∥20 < M, ∀1 < n < N, (2.12)
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then the a priori bound of GU Algorithm 2 holds∥∥uN+1
∥∥2

0
+
∥∥2uN+1 − uN

∥∥2

0
+ 2

∥∥∇ (
ϕN+1 − ϕN

)∥∥2

0
+ τµ

N∑
n=1

∥∥∇ûn+1
∥∥2

0

+
N∑

n=1

(∥∥un+1 − 2un + un−1
∥∥2

0
+ 4

∥∥∇ (
ϕn+1 − 2ϕn + ϕn−1

)∥∥2

0

)
+ 2τµ

∥∥sN+1 − sN
∥∥2

0
≤

∥∥u1
∥∥2

0
+
∥∥2u1 − u0

∥∥2

0
+ 2

∥∥∇ (
ϕ1 − ϕ0

)∥∥2

0

+ C
τ

µ

N∑
n=1

∥∥f(tn+1)
∥∥2

−1
+ 2τµ

∥∥s1 − s0
∥∥2

0
+M.

(2.13)

The stability constraint (2.12) is rather strong condition, and so Algorithm 2 needs
to choose small enough τ . Also (2.12) is an unusual constraint, because of including
amount of numerical value sn. However, we can evaluate ∥∇sn∥0 before start com-
puting n+ 1 time step, so we can derive an adaptive Algorithm 5 in §3 to control time
marching step size.

Recently, an stabilized GUM has been introduced in [12] by imposing the pressure
equation (2.5) which makes (2.3) yield

3ûn+1 − 4un + un−1

2τ
− µûn+1

−∇
(
3ϕn − 3ϕn−1

2τ
− µ△

(
ϕn − ϕn−1

))
= f(tn+1).

(2.14)

Because the functions of ϕ in 3 equations (2.2), (2.5), and (2.14) are formed by the
subtraction of 2 consecutive functions, we use simple notation ψn+1 := ϕn+1 − ϕn.
Owing to divergence free condition ∇· un+1 = 0, (2.5) gives

−△ψn+1 = −△
(
ϕn+1 − ϕn

)
= −△

(
ϕn − ϕn−1

)
+∇· ûn+1 = −△ψn +∇· ûn+1.

(2.15)

To deal with the third order term ∇△ϕn, which is a source of trouble due to lack of
commutativity of the differential operators at the discrete level, we denote qn+1 :=
△ψn+1. So (2.15) can be rewritten by

qn+1 = qn −∇· ûn+1,

which is connected with the Uzawa iteration.

Algorithm 3 (The stabilized Gauge-Uzawa Method). Compute u1 and p1 via any
first order projection method and set ψ1 = −2τ

3
p1 and q1 = 0. Repeat for 1 ≤ n ≤

N = [T
τ
− 1].
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Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of

3ûn+1 − 4un + un−1

2τ
+∇pn + (u∗ · ∇)ûn+1 − µ△ûn+1 = f(tn+1),

ûn+1|Γ = 0.

Step 2: Find ψn+1 as the solution of

−△ψn+1 = −△ψn +∇ · ûn+1,

∂νννψ
n+1|Γ = 0.

Step 3: Update un+1 and qn+1 by

un+1 = ûn+1 +∇
(
ψn+1 − ψn

)
qn+1 = qn −∇ · ûn+1.

Step 4: Update pressure pn+1 by

pn+1 = −3ψn+1

2τ
+ µqn+1.

In [12], they conclude that Algorithm 3 in continuous level is equivalent to the ro-
tational form of pressure correction method which is introduced in [5]. It is proved in
[12] that Algorithm 3 is unconditionally stable. In addition, the errors for Algorithm
3 is evaluated in [5] for Stokes equations and extended for Navier-Stokes equations in
[12] under following assumptions:

Assumption 1 (Regularity of Ω). Let {v, r} be the unique solution of the steady
Stokes equation

−△v +∇r = w, in Ω,

∇· v = 0, in Ω,

v = 0, on ∂Ω.

Then {v, r} satisfies
∥v∥2 + ∥r∥1 ≤ C∥w∥0.

We remark that the validity of Assumption 1 is known if ∂Ω is of class C2 [2, 6], or
if ∂Ω is a two-dimensional convex polygon [7], and is generally believed for convex
polyhedral [6].

Assumption 2 (Initial setting). Let (u(t1), p(t1)) be the exact solution of (1.1) at
t = t1. The initial value (u1, p1) satisfies∥∥u(t1)− u1

∥∥
0
≤ Cτ 2 and

∥∥u(t1)− u1
∥∥
1
+
∥∥p(t1)− p1

∥∥
0
≤ Cτ.
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Lemma 2.2 (Error estimates). Suppose the exact solution of (1.1) is smooth enough.
If Assumptions 1 and 2 hold, then the errors of Algorithms 3 will be bounded by

τ
N∑

n=1

(∥∥u(tn+1)− un+1
∥∥2

0
+
∥∥u(tn+1)− ûn+1

∥∥2

0

)
≤ Cτ 4,

τ
N∑

n=1

(∥∥u(tn+1)− ûn+1
∥∥2

1
+
∥∥p(tn+1)− pn+1

∥∥2

0

)
≤ Cτ 2.

Furthermore, if assumption 2 hold, then we have∥∥∇ · ûn+1
∥∥
0
≤ Cτ

3
2 .

The errors of Algorithm 3 decay fully second order rate in the numerical tests in §5,
but the form of pressure term in (2.8) seems like the first order extrapolation. So we
are interested in more accurate pressure scheme via imposing pressure equation (2.6)
which makes (2.3) become

3ûn+1 − 4un + un−1

2τ
+∇

(
2pn − pn−1

)
− µ△ûn+1 = f(tn+1).

So we arrive at the new GUM which hires the 2nd order extrapolation on pressure.

Algorithm 4 (The accurate pressure Gauge-Uzawa Method). Set u1, ϕ1, and s1

using the first-order GUM Algorithm 1. Repeat for 1 ≤ n ≤ N = [T
τ
− 1].

Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of

3ûn+1 − 4un + un−1

2τ
+∇

(
2pn − pn−1

)
+(u∗ · ∇)ûn+1 − µ△ûn+1 = f(tn+1),

ûn+1|Γ = 0.

(2.16)

Step 2: Find ϕn+1 as the solution of (2.9).
Step 3: Update un+1 and sn+1 by (2.10).
Step 4: Compute pressure by addition of 2 functions as

pn+1 = −3ϕn+1

2τ
+ µsn+1. (2.17)

Remark 2.3 (The property of Algorithm 4). The pressure in (2.16) is imposed the
2nd order extrapolate scheme, so Algorithm 4 performs more accurate than Algorithms
2 and 3. But, in the view of (2.17), the second order scheme 2pn − pn−1 includes
2sn − sn−1 which is the same as in Algorithm 2, so this algorithm also requests the
same stability constraint (2.12) as in Algorithm 2.
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3. THE θ TIME DISCRETE GAUGE-UZAWA METHOD

Algorithms 2 and 4 request high computational cost due to the stability condition
(2.12). In order to solve this difficulty, we observe the fact that the applicable τ depends
on the amount of ∥snh∥

2
0 and so we do not need to impose so small τ if ∥snh∥

2
0 is small

enough. Since we can calculate ∥∇sn∥0 after finishing n-th step computation, we
can determine the time marching size of (n + 1)-th step by using (2.12). Because
BDF2 scheme is a 2 step method, we need to impose an adaptive technique which
is called θ scheme to use non-uniform time marching method. We define θ scheme
with standard notations. Let t1, t2, · · · , tn, · · · be node points on time and let τn =
tn − tn−1 and τn+1 = M

µ2∥∇sn∥20
, where M is a fixed positive real number. Then τn+1,

for all n, satisfies (2.12). We denote θ := τn+1

τn
as a rate indicator of variation of

time step size. In addition we note that 2 step extrapolation on non-uniform grid is
zn+1 = (1 + θ)zn − θzn−1, for any function z. Then (2.2) becomes, for the case of
non-uniform mesh on time,

ûn+1 = un+1 −∇
(
ϕn+1 − (1 + θ)ϕn + θϕn−1

)
.

Finally, we arrive at the following θ-scheme by elementary numerical technique.

Algorithm 5 (The θ-scheme of the classical Gauge-Uzawa method). Set initial
values using a first-order Gauge-Uzawa method with a suitable τ = τ ∗ and ϕ0 = 0.
And choose a positive real number M . Start the following iteration with n = 1 until to
reach terminal time T .

Step 1: Define τ = tn − tn−1 and τn+1 = M
µ2∥∇sn∥20

. Set

θ =
τn+1

τ
. (3.1)

If τn+1 ≥ τ ∗, then set τn+1 = τ ∗. And set tn+1 = tn + τn+1.
Step 2: Set u∗ = (1 + θ)un − θun−1 and find ûn+1 as the solution of

(2θ + 1)ûn+1 − (θ + 1)2un + θ2un−1

θ(θ + 1)τ
+ (u∗ · ∇)ûn+1 − µ△ûn+1

−∇
(
ϕn − ϕn−1

τ
− µ

(
(θ + 1)sn − θsn−1

))
= f(tn+1),

ûn+1|Γ = 0.

Step 3: Find ϕn+1 as the solution of

−△ϕn+1 = −△
(
(θ + 1)ϕn − θϕn−1

)
+∇ · ûn+1,

∂νννϕ
n+1|Γ = 0.
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Step 4: Update un+1 and sn+1 by

un+1 = ûn+1 +∇
(
ϕn+1 − (θ + 1)ϕn + θϕn−1

)
,

sn+1 = (θ + 1)sn − θsn−1 −∇ · ûn+1.

Pressure: Compute pressure whenever necessary as

pn+1 = −(2θ + 1)ϕn+1 − (θ + 1)2ϕn + θ2ϕn−1

θ(θ + 1)τ
+ µsn+1.

4. PROOF OF STABILITIES

In this section, we prove the Theorems 1. We start to prove main theorem via the
following well-known lemmas in [3].

Lemma 4.1 (Orthogonality between divergence free function and curl free func-
tion). Let v ∈ H1(Ω) and q ∈ L2(Ω). If ∇· u = 0 and u · ννν = 0 on ∂Ω, then

⟨u , ∇q⟩ = 0.

Lemma 4.2 (Inner product with convection term). Let u,v,w ∈ H1(Ω) and ∇·u =
0. If

u · ννν = 0 or v = 0 on ∂Ω,

then ∫
Ω

(u · ∇)v ·wdx = −
∫
Ω

(u · ∇)w · vdx

and ∫
Ω

(u · ∇)v · vdx = 0.

The following elementary but crucial relation is derived in [8, 9].

Lemma 4.3 (div-grad relation). If v ∈ H1
0(Ω), then

∥∇ · v∥0 ≤ ∥∇v∥0.

We now introduce a well know lemma to treat time derivative terms.

Lemma 4.4 (Inner product of time derivative terms). For any sequence {z}Nn=0, we
have

2
⟨
3zn+1 − 4zn + zn−1 , zn+1

⟩
=

∥∥zn+1
∥∥2

0
+
∥∥2zn+1 − zn

∥∥2

0

+
∥∥zn+1 − 2zn + zn−1

∥∥2

0
− ∥zn∥20 −

∥∥2zn − zn−1
∥∥2

0
,

(4.1)

2
⟨
zn+1 − zn , zn+1

⟩
=

∥∥zn+1
∥∥2

0
− ∥zn∥20 +

∥∥2zn+1 − zn
∥∥2

0
, (4.2)
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and
2
⟨
zn+1 − zn , zn

⟩
=

∥∥zn+1
∥∥2

0
− ∥zn∥20 −

∥∥2zn+1 − zn
∥∥2

0
. (4.3)

We now start to prove stability of Algorithm 2 with rewriting (2.8) by using (2.10)
as

3un+1 − 4un + un−1

2τ
+ (u∗ · ∇)ûn+1 − µ△ûn+1

−∇
(
3ϕn+1 − 4ϕn + ϕn−1

2τ
− µ

(
2sn − sn−1

))
= f(tn+1).

We now multiply by 4τ ûn+1 and use (4.1) to get∥∥un+1
∥∥2

0
+
∥∥2un+1 − un

∥∥2

0
+
∥∥un+1 − 2un + un−1

∥∥2

0

−∥un∥20 −
∥∥2un − un−1

∥∥2

0
+ 4τµ

∥∥∇ûn+1
∥∥2

0
=

3∑
i=1

Ai,
(4.4)

where
A1 = 2

⟨
∇

(
3ϕn+1 − 4ϕn + ϕn−1

)
, ûn+1

⟩
,

A2 = 4τµ
⟨
2sn − sn−1 , ∇ · ûn+1

⟩
,

A3 = 4τ
⟨
f(tn+1) , ûn+1

⟩
.

We note here that the convection term is vanished by Lemma 4.2. In conjunction with
(2.10) and (4.2), Lemma 4.1 yields

A1 =− 2
⟨
∇

(
3ϕn+1 − 4ϕn + ϕn−1

)
, ∇

(
ϕn+1 − 2ϕn + ϕn−1

)⟩
=− 2

∥∥∇ (
ϕn+1 − ϕn

)∥∥2

0
+ 2

∥∥∇ (
ϕn − ϕn−1

)∥∥2

0
− 4

∥∥∇ (
ϕn+1 − 2ϕn + ϕn−1

)∥∥2

0
.

In light of the second equation in (2.10), A2 becomes

A2 =− 4τµ
⟨
2sn − sn−1 , sn+1 − 2sn − sn−1

⟩
=− 4τµ

⟨
sn − sn−1 , sn+1 − 2sn − sn−1

⟩
− 4τµ

⟨
sn , sn+1 − 2sn − sn−1

⟩
=A2,1 + A2,2.

If we use Lemma 4.3, we can readily get∥∥sn+1 − 2sn + sn−1
∥∥2

0
=

∥∥∇ · ûn+1
∥∥2

0
≤

∥∥∇ûn+1
∥∥2

0

and use (4.3) to deduce

A2,1 = −2τµ
(∥∥sn+1 − sn

∥∥2

0
−
∥∥sn − sn−1

∥∥2

0
−

∥∥sn+1 − 2sn + sn−1
∥∥2

0

)
≤ −2τµ

(∥∥sn+1 − sn
∥∥2

0
−

∥∥sn − sn−1
∥∥2

0

)
+ 2τµ

∥∥∇ûn+1
∥∥2

0
.
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We use (2.10) and (2.9) and then apply integral by parts to obtain

A2,2 = −4τµ
⟨
sn , sn+1 − 2sn − sn−1

⟩
= 4τµ

⟨
sn , ∇ · ûn+1

⟩
= −4τµ

⟨
sn , △

(
ϕn+1 − 2ϕn − ϕn−1

)⟩
≤ Cτ 2µ2∥∇sn∥20 +

∥∥∇ (
ϕn+1 − 2ϕn − ϕn−1

)∥∥2

0
.

In other hand, Hölder inequality yields

A3 ≤ C
τ

µ

∥∥f(tn+1)
∥∥2

−1
+ τµ

∥∥∇ûn+1
∥∥2

0
.

Inserting above estimates into (4.4) derives∥∥un+1
∥∥2

0
+
∥∥2un+1 − un

∥∥2

0
+
∥∥un+1 − 2un + un−1

∥∥2

0
−
∥∥2un − un−1

∥∥2

0
− ∥un∥20

+ 2
(∥∥∇ (

ϕn+1 − ϕn
)∥∥2

0
−
∥∥∇ (

ϕn − ϕn−1
)∥∥2

0

)
+ 3

∥∥∇ (
ϕn+1 − 2ϕn + ϕn−1

)∥∥2

0

+ τµ
∥∥∇ûn+1

∥∥2

0
+ 2τµ

(∥∥sn+1 − sn
∥∥2

0
−

∥∥sn − sn−1
∥∥2

0

)
≤ C

τ

µ

∥∥f(tn+1)
∥∥2

−1
+ Cτ 2µ2∥∇sn∥20.

In light of (2.12), we obtain

τ 2µ2

N∑
n=1

∥∇sn∥20 ≤ τµ2 N
max
n=1

∥∇sn∥20 ≤M,

and so we arrive at (2.13) via summing for n from 1 to N .

5. NUMERICAL EXPERIMENTS

In this section, we carried out numerical experiments to compare to theoretical re-
sults. We perform with known solutions to check accuracy and compute driven cavity
flows to check stability.

5.1. Mesh analysis with polynomial example. The first example is performance
with known exact solution which is imposed forcing term the exact solution to become

u =cos(t)
(
x2 − 2x3 + x4

) (
2y − 6y2 + 4y3

)
,

v =− cos(t)
(
y2 − 2y3 + y4

) (
2x− 6x2 + 4x3

)
,

p =cos(t)

(
x2 + y2 − 2

3

)
.

(5.1)
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Tables 1, 2, and 3 are mesh analysis of Algorithms 2, 3, and 4, respectively. We impose
µ = 1 and τ = h in these tests. We define notations E and e as error functions for
velocity and pressure, respectively.

h 1/16 1/32 1/64 1/128 1/256

∥E∥0 9.83161e-05 3.05559e-05 8.13503e-06 2.01614e-06 5.01679e-07
Order 1.685977 1.909231 2.012552 2.006759

∥E∥L∞
0.000926506 7.64737e-05 1.98964e-05 4.93618e-06 1.231e-06

Order 3.598765 1.942456 2.011041 2.003564

∥E∥1 0.00581341 0.00048326 0.000119246 2.94906e-05 7.41107e-06
Order 3.588513 2.018859 2.015614 1.992501

∥e∥0 0.00969686 0.000591138 0.000140191 3.43644e-05 8.54948e-06
Order 4.035951 2.076101 2.028407 2.007006

∥e∥L∞
0.3328 0.0193977 0.00225387 0.000559215 0.000155937
Order 4.100698 3.105409 2.010929 1.842440

TABLE 1. Error decay of Algorithm 2 with exact solution (5.1).

h 1/16 1/32 1/64 1/128 1/256

∥E∥0 0.000766413 0.000231018 6.42159e-05 1.70043e-05 4.38265e-06
Order 1.730117 1.847003 1.917031 1.956024

∥E∥L∞
0.00197285 0.000618625 0.000180551 5.0349e-05 1.36219e-05

Order 1.673144 1.776659 1.842371 1.886035

∥E∥1 0.0123447 0.00406798 0.00126886 0.000382078 0.000112936
Order 1.601507 1.680780 1.731594 1.758362

∥e∥0 0.0145993 0.0047309 0.00146086 0.000430436 0.000123065
Order 1.625713 1.695297 1.762947 1.806378

∥e∥L∞
0.207157 0.0865286 0.0379158 0.0156967 0.00626727

Order 1.259476 1.190378 1.272338 1.324552
TABLE 2. Error decay of Algorithm 3 with exact solution (5.1).

In Table 1, the classical GUM which is Algorithm 2 performs 2nd order accuracy
for most of spatial error, but the error in L∞(0, 1 : L∞(Ω)) displays perturbation. So
we perform other example in §5.2. Because this oscillation disappear in Table 1 which
is the test with (5.2), we expect that the error in L∞(0, 1 : L∞(Ω)) will also converge
to 2 and that the accuracy is fully 2nd order in all spaces.
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h 1/16 1/32 1/64 1/128 1/256

∥E∥0 4.8541e-05 5.69019e-06 6.71056e-07 8.76035e-08 1.12158e-08
Order 3.092655 3.083972 2.937373 2.965456

∥E∥L∞
0.000396898 3.33674e-05 1.86666e-06 2.59669e-07 4.14608e-08

Order 3.572257 4.159908 2.845713 2.646854

∥E∥1 0.00193225 0.000207701 1.57598e-05 3.00764e-06 1.19194e-06
Order 3.217702 3.720187 2.389545 1.335320

∥e∥0 0.00308668 0.000337233 1.44083e-05 2.24362e-06 3.33836e-07
Order 3.194238 4.548774 2.683000 2.748617

∥e∥L∞
0.101547 0.021122 0.00017087 7.51221e-05 1.44142e-05

Order 2.265329 6.949703 1.185590 2.381747
TABLE 3. Error decay of Algorithm 4 with exact solution (5.1).

Table 2 is the error decay of Algorithm 3. The error for velocity in L∞(0, 1 : L2(Ω))
converges to order 2, and it consists to theoretical result in Lemma 2.2. But errors in
other spaces seem to lose order as well as in Table 5 which is the test with (5.2). So we
conclude that Algorithm 3 is unconditionally stable, but includes oscillation except in
L∞(0, 1 : L2(Ω)).

Table 3 is the error decay of Algorithm 4. As mentioned in Remark 2.3, we can see
overconvergence for Algorithm 4. This is due to higher order extrapolation of pressure.
Algorithm 4 performs better accuracy than other, but this method includes rather big
oscillations.

5.2. Mesh analysis with triangular functions. Because the test in §5.1 includes ab-
normal symptom, we carry out numerical test again with the same example in [4]:

u =π sin(t) sin(2πy) sin2(πx),

v =− sin(t) sin(2πx) sin2(πy),

p =− sin(t) cos(πx) sin(πy).

(5.2)

Tables 4, 5, and 6 are mesh analysis of Algorithms 2, 3, and 4, respectively. We also
impose the same conditions as in §5.1.

Table 4 is the numerical result for the classical GUM which is Algorithm 2. In
contrast in Table 1, the convergence rates for all errors are 2. In Table 5, the velocity
error in L∞(0, 1 : L2(Ω)) for Algorithm 3 converges to 0 with rate 2 and this result
consists to Table 2 and Lemma 2.2. For the numerical results Table 2 and Table 5, we
conclude that Algorithm 3 lose accuracy for other errors. However, this algorithm is
unconditionally stable in [12].
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h 1/16 1/32 1/64 1/128 1/256

∥E∥0 0.000374286 5.83689e-05 1.14962e-05 2.65413e-06 6.50019e-07
Order 2.680869 2.344043 2.114846 2.029685

∥E∥L∞
0.000835976 0.000166414 3.70314e-05 8.70111e-06 2.11636e-06

Order 2.328685 2.167956 2.089478 2.039614

∥E∥1 0.0532202 0.0133404 0.00333751 0.000834537 0.000208653
Order 1.996172 1.998958 1.999724 1.999870

∥e∥0 0.00220608 0.000464423 0.000115444 2.90385e-05 7.28256e-06
Order 2.247974 2.008246 1.991154 1.995449

∥e∥L∞
0.0200976 0.00145889 0.00035159 8.72965e-05 2.18391e-05

Order 3.784080 2.052905 2.009898 1.999010
TABLE 4. Error decay of Algorithm 2 with exact solution (5.2).

h 1/16 1/32 1/64 1/128 1/256

∥E∥0 0.000666171 0.000171224 4.67914e-05 1.26051e-05 3.30152e-06
Order 1.960008 1.871570 1.892236 1.932805

∥E∥L∞
0.00164411 0.000487813 0.000161503 4.89765e-05 1.39134e-05

Order 1.752907 1.594767 1.721399 1.815615

∥E∥1 0.053935 0.0136668 0.00347407 0.000886726 0.00022716
Order 1.980546 1.975977 1.970067 1.964780

∥e∥0 0.00578956 0.00229765 0.000860856 0.000292507 9.15238e-05
Order 1.333295 1.416315 1.557301 1.676252

∥e∥L∞
0.061034 0.0380297 0.0183978 0.00794517 0.00322284

Order 0.682487 1.047593 1.211383 1.301746
TABLE 5. Error decay of Algorithm 3 with exact solution (5.2).

An remarkable result is Table 6. Big oscillations in Table 3 are disappeared in Table
6. But the difference for errors between Algorithms 2 and 4 also reduced in this test.
So we can conclude that Algorithm 4 is more accurate than others, but that this method
includes perturbations.

5.3. Driven cavity flow. The goal of this section is to check stability of Algorithm
3 via computing the driven cavity flow. In order to assert that Algorithm 3 is un-
conditionally stable, we perform this test under extremely weak stable conditions:
µ = 1/10, 000, h = 1/256, and τ = 0.5. In general, τ has to be less than h to
make hold stable condition. The figure 1 is the numerical result of Algorithm 3. Even
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h 1/16 1/32 1/64 1/128 1/256

∥E∥0 0.000337692 4.3098e-05 5.61456e-06 7.92313e-07 1.34147e-07
Order 2.970015 2.940376 2.825031 2.562256

∥E∥L∞
0.00047177 6.12214e-05 7.979e-06 1.20303e-06 2.15262e-07

Order 2.945976 2.939756 2.729535 2.482507

∥E∥1 0.0531745 0.0133294 0.00333457 0.000833776 0.00020846
Order 1.996123 1.999039 1.999769 1.999889

∥e∥0 0.000582949 0.000128133 2.64715e-05 5.60035e-06 1.23071e-06
Order 2.185728 2.275130 2.240851 2.186026

∥e∥L∞
0.00542067 0.00191244 0.000394239 9.06402e-05 1.89593e-05

Order 1.503057 2.278272 2.120848 2.257245
TABLE 6. Error decay of fixed Algorithm 4 with exact solution (5.2).

though we impose very big τ = 0.5, it is still stable, we conclude Algorithm 3 is
unconditionally stable. The figure 1 includes lots of oscillation and it is due to big
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FIGURE 1. Driven cavity for 3 with µ = 1/10, 000, h = 1256, τ = 0.5.
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τ = 0.5.
In contrast Algorithm 3, Algorithms 2 and 4 have to hold the stability constraint

(2.12) and so requires very small τ for high viscosity problems. Because the stability
condition (2.12) depends on H1-norm of sn which is a part of pressure, the range of
stability also depends on examples. So the applicability of both algorithms is limited
only for simple problems. Therefore we perform the test with Algorithm 5 which is
an adaptive method for time. Even though the time marching size τ on Algorithm 5 is
adjusted to make hold (2.12) at each step, the algorithm is not free from the constraint
because of τ → 0 as ∇sn → ∞. We have tried to impose high Reynolds numbers as
big as possible, and the biggest number is only around u = 1/1, 000 due to the time
consuming. We note that the determinator equivalent to the stability constraint (2.12),
and so τ ∗ = minn{τn = tn − tn−1}. Figure 2 is simulation of driven cavity flow for
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FIGURE 2. Driven cavity for 5 with µ = 1/1, 000 and h = 1/128

Algorithm 5 with µ = 1/1, 000, M = 0.5, and h = 1/128. The initial time step size
is given τ 1 = 0.5, τn for all 1 < n < N is computed by (3.1), and τ ∗ is determined
0.008.
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Remark 5.1 (The role of M ). In Figure 2, numerical result and stability do not de-
pend much on the number of M , if M ≤ 5, 000. But this scheme becomes unstable for
M ≥ 5, 000. We fix M = 0.5 which is the same as τ 1 = 0.5 in this test. If we impose
bigger M , time marching size increases little bit in a few initial steps and then return
to the similar step size to the case of M = 0.5.

6. CONCLUSION

The classical GUM Algorithm 2 has been considered as one of the most accurate
method and displays fully 2nd order error decay at the tests in §5.1 and §5.2. But
the method suffers from rather strong stability constraint (2.12) which is proved in
Theorem 1. In order to overcome the strong condition, we construct Algorithm 5
which is an adaptive method for time to make hold the condition (2.12) at each time
step. We obtain a driven cavity flows in Figure 2, and so we conclude that the condition
(2.12) is correct for Algorithm 2 because both Algorithms 2 and 5 are equivalent for
the uniform mesh on time. However, the numerical result in Figure 2 is only for the
case µ = 1/1, 000 which is not big enough to apply to real industrial problems.

In contrast Algorithm 2, the stabilized GUM Algorithm 3 is unconditionally stable
scheme and it is verified by numerical test in Figure 1. But we found out that the
algorithm lose convergence order at the tests in §5.1 and §5.2.

Algorithm 4 which is newly constructed scheme displays the best accurate perfor-
mance in §5.1 and §5.2, but the scheme includes perturbation on the tests and requires
the strong stability constraint (2.12) as we mentioned in Remark 2.3.

Therefore we conclude that the most reliable method is the classical GUM Algo-
rithm 2, Algorithm 3 is unconditionally stable, and the most accurate method is 4.
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