References
- A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein structure, SIAM Rev, 39 (1997), 407-460. https://doi.org/10.1137/S0036144594278060
- C.B. Anfinsen, Principles that govern the folding of protein chains, Science, 181 (1973), 223-230. https://doi.org/10.1126/science.181.4096.223
- R. Samudrala and J. Moult, An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction, J Mol Biol, 275 (1998), 895-916. https://doi.org/10.1006/jmbi.1997.1479
- M.J. Sippl, Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins, J Mol Biol, 213 (1990), 859-883. https://doi.org/10.1016/S0022-2836(05)80269-4
- H. Zhou and Y. Zhou, Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction, Protein science, 11 (2002), 2714-2726.
- T. Hamelryck, Potentials of mean force for protein structure prediction vindicated, formalized and generalized, PLoS ONE, 5 (2010), 1-11.
- M. Gribskov, A.D. McLachlan, and D. Eisenberg, Profile analysis: detection of distantly related proteins, Proc Natl Acad Sci, 84 (1987), 4355-8. https://doi.org/10.1073/pnas.84.13.4355
- Y. Zhang, Template-based modeling and free modeling by I-TASSER in CASP7, Proteins, 69(Suppl 8) (2007), 108-117. https://doi.org/10.1002/prot.21702
- D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature, 437 (2005), 640-647. https://doi.org/10.1038/nature04162
- T. Hamelryck, An amino aicd has two sides: a new 2D measure provides a different view of solvent exposure, Proteins, 59 (2005), 38-48. https://doi.org/10.1002/prot.20379
- G. Wang and R.L.Dunbrack, PISCES: a protein sequence culling server, Bioinformatics, 19 (2003), 1589- 1591. https://doi.org/10.1093/bioinformatics/btg224
- R. Das and D. Baker, Macromolecuar modeling with rosetta, Annu.Rev.Biochem., 77 (2008), 363-382. https://doi.org/10.1146/annurev.biochem.77.062906.171838
- J. Lee, H.A.Scheraga, and S.Rackovsky, New optimization method for conformational energy calculations on polypeptides: conformational space annealing, J. Comput. Chem., 18 (1997), 1222-1232. https://doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7
- S-Y Kim, S.J. Lee, and J. Lee, Conformational space annealing and an off-lattice frustrated model protein, J. Chem. Phys., 119 (2003), 10274-10279. https://doi.org/10.1063/1.1616917
- J. Lee, K. Joo, S-Y Kim, and J. Lee, Re-examination of structure optimization of off-lattice protein AB models by Conformational space annealing, J. Comput. Chem., 29 (2008), 2479-2484. https://doi.org/10.1002/jcc.20995
- K. Joo, J. Lee, I. Kim, S.J.Lee, and J. Lee, Multiple sequence alignment by conformational space annealing, Biophysical J., 95 (2008), 4813-4819. https://doi.org/10.1529/biophysj.108.129684
- K. Joo, J. Lee, J-H Seo, K. Lee, B-G Kim, and J. Lee, All-atom chain-building by optimizing MODELLER energy function using conformational space annealing, Proteins., 75 (2009), 1010-1023. https://doi.org/10.1002/prot.22312
- DT Jones, Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292 (1999), 195-202. https://doi.org/10.1006/jmbi.1999.3091