과제정보
연구 과제 주관 기관 : National Research Foundation of Korea(NRF)
참고문헌
- Y. J. Ahn. Conic approximation of planar curves. Comp. Aided Desi., 33:867-872, 2001. https://doi.org/10.1016/S0010-4485(00)00110-X
- Y. J. Ahn. Helix approximation with conic and qadratic Bezier curves. Comp. Aided Geom. Desi., 22:551-565, 2005. https://doi.org/10.1016/j.cagd.2005.02.003
- Y. J. Ahn. Approximation of conic sections by curvature continuous quartic Bezier curves. Comp. Math. Appl., 60:1986-1993, 2010. https://doi.org/10.1016/j.camwa.2010.07.032
- Y. J. Ahn and H. O. Kim. Curvatures of the quadratic rational Bezier curves. Comp. Math. Appl., 36:71-83, 1998.
- Y. J. Ahn, Y. S. Kim, and Y. Shin. Approximation of circular arcs and offset curves by Bezier curves of high degree. J. Comp. Appl. Math., 167:405-416, 2004. https://doi.org/10.1016/j.cam.2003.10.008
- E. Boebert. Computing the arc length of cubic Bezier curves, 1993. http://steve.hollasch.net/cgindex/curves/cbezarclen.html, accessed 2010.
- M. A. Earle. A vector solution for navigation on a great ellipse. J. Navi., 53:473-481, 2000. https://doi.org/10.1017/S0373463300008948
- G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan-Kaufmann, San Francisco, 2002.
- M. Floater. High-order approximation of conic sections by quadratic splines. Comp. Aided Geom. Desi., 12(6):617-637, 1995. https://doi.org/10.1016/0167-8396(94)00037-S
-
M. Floater. An O(
$h^{2n}$ ) Hermite approximation for conic sectoins. Comp. Aided Geom. Desi., 14:135-151, 1997. https://doi.org/10.1016/S0167-8396(96)00025-8 - M. S. Floater. Arc length estimation and the convergence of polynomial curve interpolation. Journal BIT Numerical Mathematics, 45:679-694, 2005. https://doi.org/10.1007/s10543-005-0031-2
- M. S. Floater and A. F. Rasmussen. Point-based methods for estimating the length of a parametric curve. Journal of Computational and Applied Mathematics, 196:512-522, 2006. https://doi.org/10.1016/j.cam.2005.10.001
- M. S. Floater, A. F. Rasmussen, and U. Reif. Extrapolation methods for approximating arc length and surface area. Numer. Alg., 44:235-248, 2007. https://doi.org/10.1007/s11075-007-9095-1
- J. Gravesen. Adaptive subdivision and the length and energy of Bezier curves. Computational Geometry, 8:13-31, 1997. https://doi.org/10.1016/0925-7721(95)00054-2
- J. Gravesen. The arc-length and energy of rational Bezier curves. Mat-report 1997/26, Department of Mathematics, Technical University of Denmark, 1997.
- E. T. Lee. The rational Bezier representation for conics. In geometric modeling : Algorithms and new trends, pages 3-19. SIAM, Academic Press, 1987.
- J. Malczak. Quadratic Bezier curve length. Undated web page; http://segfaultlabs.com/docs/quadratic-bezier-curve-length, accessed 2010.
- A. Pallikaris and G. Latsas. New algorithm for great elliptic sailing (GES). J. Navi., 62:497-507, 2009.
- T. Pavlidis. Curve fitting with conic splines. ACM Trans. Graph., 2:1-31, 1983. https://doi.org/10.1145/357314.357315
- A. F. Rasmussen and M. S. Floater. A point-based method for estimating surface area. In Proceedings of the SIAM Conference on Geometric Design, 2005.
- J. A. Roulier. Specifying the arc length of Bezier curves. Comp. Aided Geom. Desi., 10:25-56, 1993. https://doi.org/10.1016/0167-8396(93)90050-D
- J. A. Roulier and B. Piper. Prescribing the length of parametric curves. Comp. Aided Geom. Desi., 13:3-22, 1996. https://doi.org/10.1016/0167-8396(95)00004-6
- J. A. Roulier and B. Piper. Prescribing the length of rational Bezier curves. Comp. Aided Geom. Desi., 13:23-42, 1996. https://doi.org/10.1016/0167-8396(95)00005-4
- M. Schechter. Which way is jerusalem? Navigating on a spheroid. The College Mathematics Journal, 38:96-105, 2007.
- W.-K. Tseng and H.-S. Lee. Navigation on a great ellipse. J. Mari. Scie. Tech., 18:369-375, 2010.
- H.Wang, J. Kearney, and K. Atkinson. Arc-length parametrized spline curves for real-time simulation. In Tom Lyche, Marie-Laurence Mazure, and Larry L. Schumaker, editors, Curve and Surface Design, pages 387-396, 2002.