References
- C. BANDLE, H.A. LEVINE, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc, 316(1989), 595-622 https://doi.org/10.1090/S0002-9947-1989-0937878-9
- H. BERESTYCKI, I.CAPUZZO DOLCETTA AND L. NIRENBERG, Superlinear indenite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal, 4(1994), no.1, 59-78. https://doi.org/10.12775/TMNA.1994.023
- I. BIRINDELLI AND F. DEMENGEL, Some Liouville theorems for the p-Laplacian Elec. J. Differential Equations, Conference 08, 2002, 35-46.
- I. BIRINDELLI AND E. MITIDIERI, Liouville theorems for elliptic inequalities and applications, Proc. Royal Soc. Edinburgh Vol. 128A(1998), 1217-1247.
- A. BONFIGLIOLI AND E. LANCONELLI, Liouville-type theorems for real sub-Laplacians, Manuscripta Math, 105 (2001), 111-124. https://doi.org/10.1007/PL00005872
- G. CARISTI, Existence and nonexistence of global solutions of degenerate and singular parabolic systems, Abstr. Appl. Anal, Volume 5, Number 4 (2000), 265-284. https://doi.org/10.1155/S1085337501000380
- LUCIO DAMASCELLI AND FRANCESCA GLADIALI, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), no.1, 67-86.
- E.N. DANCER AND Y. DU, Some remarks on liouville type results for quasi- linear elliptic equations, Proc. Amer. Math. Soc, 131 (2002), 1891-1899.
-
H. FUJITA, On the blowing up of solutions to the Cauchy problem for ut =
$\triangle$ u + u$^{1+\alpha}$ , J. Fac. Sci. Univ. Tokyo, Sect. 1A. Math, 13(1966), 119-124. - K. HAYAKAWA, On nonexistence of global solution of some semilinear parabolic differential equations, Proc. Japan. Acad. Ser. A, 49(1979), 503-505.
- A.G. KARTSATOS, V.V. KURTA, On a Liouville-type theorem and the Fujita blow-up phenomenon, Proc. Amer. Math. Soc, 132(2003), 807-813.
- V.A. KONDRAT'EV, Boundary-value problems for elliptic equations in domains with conic and angular points, Trans. Moscow Math. Soc, 16(1967), 209-292.
- G.G. LAPTEV, Absence of solutions to semilinear parabolic differential inequalities in cones, Mat. Sb, 192(2001), no.10, 51-70. https://doi.org/10.4213/sm602
- G.G. LAPTEV, Nonexistence of solutions for parabolic inequalities in unbounded cone-like domains via the test function method, J. Evol. Eq, vol.2, 42002), 459-470. https://doi.org/10.1007/PL00012600
- G.G. LAPTEV, Nonexistence of Solutions of Elliptic Dierential Inequalities in Conic Domains, Mat. Zametki, 71(2002), no.6, 855-866. https://doi.org/10.4213/mzm390
- E. MITIDIERI AND S.L. POHOZAEV, A priori estimates and blow-up of solutions to non-linear partial differential equations and inequalities, Proc. Steklov Inst. Math, 234(2001).
-
E. MITIDIERI AND S.L. POHOZAEV, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on R
$^{N}$ , J. Evol. Eq, 1(2001), 189-220. https://doi.org/10.1007/PL00001368 - A.M. PICCIRILLO, L. TOSCANO AND S. TOSCANO, Blow-up results for a class of first-order nonlinear evolution inequalities, J. Differential Equations, 212(2005), 319-350. https://doi.org/10.1016/j.jde.2004.10.026
- MARCO RIGOLI AND ALBERTO G. SETTI, A Liouville theorem for a class of superlinear elliptic equations on cones, Nonlinear dier. equ. appl, 9(2002), 15-36. https://doi.org/10.1007/s00030-002-8116-y
- NGUYEN MANH HUNG, The absence of positive solutions of second-order nonlinear elliptic equations in conical domains, Dierentsialnye Uravneniya, 34(1998), 533C539.
- TOMOMITSU TERAMOTOHIROYUKI USAMI, A liouville type theorem for semiliear elliptitc systems, Pacific Journal of Mathematics, Vol. 204, no.1, 2002.