DOI QR코드

DOI QR Code

Shear Load Transfer Characteristics of Friction Piles in Deep Soft Clay

대심도 연약지반상 마찰말뚝의 주면하중전이 거동 분석

  • Moon, Joon-Shik (Samsung C&T Engineering & Construction Group) ;
  • Paek, Jin-Yeol (Department of Civil and Environmental Engineering, Yousei University) ;
  • Jeong, Sang-Seom (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Ko, Jun-Young (Department of Civil and Environmental Engineering, Yonsei University)
  • 문준식 (삼성물산 건설부문 토목기술실) ;
  • 백진열 (연세대학교 대학원) ;
  • 정상섬 (연세대학교 사회환경시스템공학부) ;
  • 고준영 (연세대학교 대학원)
  • Received : 2011.05.21
  • Accepted : 2011.10.22
  • Published : 2011.10.31

Abstract

The shear load distribution and deformation of offshore friction piles are investigated using experimental tests and a numerical analysis. Special attention is given to the soil-pile interaction of axially loaded pile. A framework for determining the f-w curve is proposed based on both theoretical analysis and experimental load test data base. A numerical analysis that takes into account the proposed f-w curves was performed for major parameters on pile-soil interaction such as the pile diameter, the pile length, and the soil condition. Based on the analysis, it is shown that the proposed f-w method is capable of predicting the behavior of a friction pile in deep soft clay. Through comparisons with case histories and finite element results, it is found that the proposed f-w curves are more appropriate and realistic m representing the pile-soil interaction of axially loaded piles in deep soft clay than that of existing f-w method.

일반적으로 연직하중을 받는 말뚝의 주면하중전이 거동 및 변형해석을 위해 f-w 하중전이 해석법이 널리 사용되고 있다. 본 연구에서는 국내 지반조건에 적합한 대심도 마찰말뚝의 주면하중전이 해석을 고찰하였으며, 여러 현장재하시험 자료와 3차원 유한요소해석 및 이론적인 방법 통해 말뚝의 실제 거동에 보다 부합되도록 대심도 마찰말뚝의 f-w곡선을 제안하였다. 제안된 하중전이함수법의 타당성을 검증하기 위하여 현장재하시험 사례와의 비교분석을 수행하였고, 그 결과, 제안된 해석방법은 기존 f-w곡선에 비해 대심도 마찰말뚝의 거동 및 변형 특성을 적절히 예측함을 알 수 있었다. 또한 대심도 마찰 말뚝지반의 상호작용을 정량적으로 평가하기 위하여 주면하중전이거동에 영향을 주는 인자들을 통한 매개변수 연구를 추가로 수행하였다.

Keywords

References

  1. 고준영, 김영호, 최용규, 정상섬 (2010), 현장 계측 사례를 통한 단독 말뚝의 주면마찰력계수($\alpha$, $\beta$ 계수) 역산정, 한국지반공학회 논문집, 한국지반공학회, 제26권 제11호,pp. 99-110.
  2. 김정환, 이강운, 육정훈, 최용규 (2007), 말뚝 검증시험 결과를 이용한 말뚝기초 설계 사례 연구, 한국지반공학회 봄학술발표회, 한국지반공학회.
  3. 박종희 (2010), 타입강관말뚝의 토질별 하중전이곡선 도출에 관한 연구, 석사학위논문, 목포대학교.
  4. 부산광역시청 건설본부 (2004), 배수펌프장 건설공사 대안설계 보고서, 부산광역시청.
  5. 설훈일, 정상섬 (2007), 현장 말뚝재하시험을 통한 암반에 근입된 현장타설말뚝의 주면마찰력 결정, 한국지반공학회 논문집, 한국지반공학회, 제23권 제9호, pp.51-63.
  6. 임종석, 최용규, 심종선, 박종희 (2009), 타입강관말뚝의 토질별 하중전이곡선 도출에 관한 연구, 한국지반공학회 논문집, 한국지반공학회, 제25권 제9호, pp.29-43.
  7. 조성한 (1997), 풍화암에 근입된 현장타설말뚝의 하중전이에 관한 연구, 박사학위논문, 연세대학교.
  8. 조후연, 정상섬, 설훈일 (2009), 암반에 근입된 현장타설말뚝의 선단하중전이거동 분석, 한국지반공학회 논문집, 한국지반공학회, 제25권 제8호, pp.77-93.
  9. 파일테스트 (2010), 광양 LNG 지반조사 보고서, 포스코건설.
  10. 한진콘소시엄 (1999), 인천국제공항 여객터미널 전면 고가교량 건설공사 보고서, 한진중공업.
  11. Alawneh, A. S. (2005), Modelling load displacement response of driven piles in cohesionless soils under tensile loading, Computers and Geotechnics, Vol.32, No.7-8, pp.578-586. https://doi.org/10.1016/j.compgeo.2005.11.003
  12. American Petroleum Institute (1993), Recommended Practice of Planning, Designing, and Construction of Fixed Offshore Platforms, Rep. No. API-RF-2A, Dallas.
  13. Backyong Geotechnical & Construction Engineering (2009), Report of static pile load test, Posco-Samwhan Joint Venture
  14. Begeman, H. K. S. (1969), Negative Skin Friction on a Single Pile, Proceedings, 7th international Conference on Soil Mechanics And Foundation Engineering, Mexico City, Specialty Session 8.
  15. Bozozuk, M. (1981), Bearing Capacity of Pile Preloaded by Downdrag, Proceedings. 10th international Conference on Soil Mechanics And Foundation Engineering, Stockholm, Vol.2, pp.631-636.
  16. Broms, K. F., Amesz, A. W., and Rinck, J. (1969), The Negative Skin Friction Along the Shaft of a Foundation Pile, Proc. Proceedings, 7th international Conference on Soil Mechanics And Foundation Engineering, Mexico City, Specialty Session 8.
  17. Briaud, J. L. (1997), Bitumen Selection for Reduction of Downdrag on Piles. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123 No.12, pp.1127-1134. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1127)
  18. Bui, T. Y., Li, Y., Tan, S. A., and Leung, C. F. (2005), Back Analysis of O-Cell Pile Load Test Using FEM, Proceeding of 16th International Conference Soil Mechanics and Geotechnical Engineering, Osaka, pp.1959-1962.
  19. Castelli, F., Maugeri, M., and Motta, E. (1992), "Analysis Non Lineare del cedimento di un Palo Singolo", Rivista Italiana di Geotechnica, Vol.26, No.2, pp.115-135.
  20. Combarieu, O. (1985), Frottement Negative sur les pieus, Rapport de recherche LPCN 136, Laboratoire Centrale des ponts Et Chaussees, 151.
  21. Coyle, H. M., and Reese, L. C. (1966), Load Transfer for Axially Loaded Piles in Clay, Journal of Soil Mechanics and Foundation Division, ASCE, Vol.92, No.2, pp.1-26.
  22. Fan, C. C. and Long, J. h. (2005), Assessment of Existing Methods for Predicting Soil Response of Laterally Loaded Piles in Sand, Computers and Geotechnics, Vol.32, No.4, pp.274-289. https://doi.org/10.1016/j.compgeo.2005.02.004
  23. Garlanger, J. E. (1974), Measurements of Pile Downdrag Beneath a Bridge Abutment, Transportation Research Record, Vol.517, pp.61-69.
  24. Jeong, S. S., Lee, J. H. and Lee, C. J. (2004), Slip Effect at the Pile- Soil Interface on Dragload. Computers and Geothechnics, Vol.31, No.2, pp.115-126. https://doi.org/10.1016/j.compgeo.2004.01.009
  25. Kim, Y. H. and Jeong, S. S. (2011), Analysis of Soil Resistance on Laterally Loaded Piles Based on 3D Soil-Pile Interaction, Computers and Geothechnics, Vol.38, No.2, pp.248-257. https://doi.org/10.1016/j.compgeo.2010.12.001
  26. Kim, S. I., Jeong, S. S., Cho, S. H. and Park, I. J. (1999), Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.11, pp.1000-1010.
  27. Kong, K. H., Kodikara, J. and Haque, A. (2006), Numerical Modeling of the Side Resistance Development of Piles in Mudstone with Direct Use of Sidewall Roughness, International Journal of Rock Mechanics and Mining Sciences, Vol.43, No.6, pp.987-995. https://doi.org/10.1016/j.ijrmms.2006.01.002
  28. Lee, J. H., Kim, Y. H. and Jeong, S. S. (2010), Three-Dimensional Analysis of Bearing Behavior of Piled Raft on Soft Clay, Computers and Geothechnics, Vol.37, No.1-2, pp.103-114. https://doi.org/10.1016/j.compgeo.2009.07.009
  29. Matlock, H., Bogard, D. and Lam., I. (1981), A Computer Program for the Analysis of Beam-Columns under Static Axial and Lateral Loading. The Earth Technology Co, Long Beach, California.
  30. McVay, M. C., O'Brien, M., Townsend, F. C., Bloomquist, D. G., and Caliendo, J. A. (1989), Numerical Analysis of Vertically Loaded Pile Groups. Proceedings of Foundation Engineering Congress, ASCE, Northwestern University, pp.675-690.
  31. Meyerhof, G. G. (1976), Bearing Capacity and Settlement of Pile Foundations, Journal of the Soil Mechanics and Foundation Division, ASCE, No.GT3, pp.197-228.
  32. Mindlin, R. D. (1936), Force at a point in the interior of a semiinfinite solid, J. Physics 77, & lay, 195.
  33. PLAXIS 3D Foundation (2008), PLAXIS 3D foundation user manual, Version 2.1, Brinkgreve, R.B. and Swolfs, W. M., PLAXIS Inc.
  34. Polulos, H. G., and Davis, E. H. (1968), The Settlement Behavior of Single Axially Loaded Incompressible Piles and Piers, Geotechnique, Vol.18, pp.351-371. https://doi.org/10.1680/geot.1968.18.3.351
  35. Randolph, M. F., and Wroth, C. P. (1978), Analysis of Deformation of Vertically Loaded Piles, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.104, No.GT12, pp.1465-1488.
  36. Seed, H. b., and Reese, L. C. (1957), The Action of Soft Clay along Friction Piles. Transactions, ASCE, Vol.122.
  37. Seol, H. I., Jeong, S. S., and Cho, S. H. (2009), Analytical Method for Load-Transfer Characteristics of Rock-Socketed Drilled Shafts. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.6, pp.778-789. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:6(778)
  38. Terzaghi, K., and Peck, R. B. (1967), Settlement of Point Bearing Pile Foundation: Settlement of Floating Pile Foundation, Soil Mechanics in Engineering Practice, 2nd edition, John Wiley & Sons, New York.
  39. Wallace, J. W., Fox, P. J. and Stewart J. P. (2002), Cyclic Large Deflection Testing of Shaft Bridges Part II: Analytical Studies. Rep. No. 59A0183, California Dept. of Transportation. California.
  40. Zhang, Q. Q., Zhang, Z. M. and He, J. Y. (2010), A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils, Computers and Geotechnics, Vol.37, No.8, pp.969-976. https://doi.org/10.1016/j.compgeo.2010.08.003
  41. Zeevaert, L. (1959), Reduction of Point Bearing Capacity of Pile Because of Negative Skin Friction, Proceeding 1st Pan America. Conference on Soil Mechanics and Foundation Engineering, Mexico, pp.1145-1152.