DOI QR코드

DOI QR Code

인제군 산사태 지역의 토석류 거동 예측기법 적용

The Estimation of Debris Flow Behaviors in Injae Landslide Area

  • 김기홍 (강릉원주대학교 공과대학 토목공학과) ;
  • 황제선 (강릉원주대학교 공과대학 토목공학과)
  • 투고 : 2011.09.30
  • 심사 : 2011.10.21
  • 발행 : 2011.10.31

초록

토석류는 집중호우시 산악지형에서 발생한 사면파괴 쇄설물 또는 계곡 내에 쌓여 있던 퇴적토가 많은 양의 물과 섞여 흐르는 현상으로서 이동경로나 퇴적지점에 있는 시설물, 가옥, 인명에 큰 피해를 유발한다. 본 연구에서는 해외에서 연구되었던 토석류 거동에 관련된 모형식을 국내 사례에 적용해 보았으며, 이를 위해 우리나라 강원도 인제군에서 발생한 산사태 및 토석류에 대해 항공사진과 GPS 현장 측량성과를 이용하여 발생부와 퇴적부 자료를 수집하였다. 분석한 결과 토석류 이동거리를 예측할 수 있는 L/H는 평균 4.93, 표준편차 0.97을 나타내었다. 토석류의 규모와 면적을 예측하는 경우 과대 산정되는 문제가 있으며 이는 우리나라의 토석류가 상부의 대규모 산사태로 유발되는 것이 아니고 다발적으로 발생한 소규모 산사태로 인한 것이기 때문인 것으로 보인다. 따라서 국내 산지 환경에 적합한 경험식에 대한 연구가 필요하다고 판단된다.

A debris flow is caused by torrential rain in mountainous regions and carries mixture of fragmental matter from slope failure, deposit soils from a valley floor and a large amount of water. It seriously damages facilities, houses, and human lives in its path. We tried to apply debris flow behavior estimation model developed in foreign country to domestic case. The study area is Inje-county, Gangwon-do and aerial photos and GPS surveying were used to collect information of starting and end point of the landslide and debris flow. The analysis showed that L/H for forecasting the travel distances of debris flows has the mean of 4.93 and standard deviation of 0.98. This model tended to overestimate the scale and extent of debris flows. In Inje-county's case, a debris flow is caused by multiple simultaneous small-scale landslide. This is quite different from the foreign cases in which a large-scale landslide cause a large-scale debris flow. Thus, an empirical model suitable for domestic conditions needs to be developed.

키워드

참고문헌

  1. 김경석, 장현익, 이상돈 (2008), 토석류 규모 분석 사례, 대한토목학회 정기학술대회 논문집, 대한토목학회, pp.3017-3020.
  2. 김기홍, 윤찬영, 이환길, 황제선 (2011), GIS를 이용한 인제산사태발생지역의 토석류 분석, 한국측량학회지, 한국측량학회, 제29권 제1호, 한국측량학회, pp. 47-53.
  3. 김원영, 김경수, 채병곤, 조용찬 (2000), 우리나라 산사태의 형태분류에 따른 사례, 지질공학회지, 2000년 7월세미나자료, 대한지질공학회, pp. 18-35.
  4. 서용석, 채병곤, 김원영, 송영석 (2005), 인공신경망을 이용한 사태물질 이동거리 산정, 지질공학회지, 대한지질공학회, 제15권 제2호, 대한지질공학회, pp. 145-154.
  5. 신승봉, 김기환, 최창림 (2010), 주문진 표준사를 이용한토석류 환산에 관한 연구, 한국지반환경공학회 학술발표회 논문집, 한국지반환경공학회, pp. 281-287.
  6. 채병곤, 김원영, 조용찬, 김경수, 이춘오, 최영섭 (2004), 토석류 산사태 예측을 위한 로지스틱 회귀모형 개발, 지질공학회지, 대한지질공학회, 제 14권, 제 2호, pp. 211-222.
  7. 황제선, 박초롱, 윤찬영, 김기홍 (2011), 토석류 현장조사기법의 표준화, 한국지형공간정보학회 춘계학술대회,한국지형공간정보학회, pp. 215-216.
  8. Berti, M., Simoni, A. (2007), Prediction of debris flow inundation areas using empirical mobility relationships, Geomorphology, Vol. 90, pp. 144-161. https://doi.org/10.1016/j.geomorph.2007.01.014
  9. Corominas, J. (1996), The angle of reach as a mobility index for small and large landslides, Canadian Geotechnical Jounal, Vol. 33, pp. 260-271. https://doi.org/10.1139/t96-005
  10. Heim, A. (1932), Bergsturz und Menschenleben. Beiblatt zur Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, Vol. 20, pp. 1-214.
  11. Iverson, R.M. (1997), The Physics of Debris Flows, Review of Geophysics, published by American Geophysical Union, Paper #97RG00426, pp. 245-296.
  12. Liu, X., and Lei, J. (2003), Amethod for assessing regional debris flow risk: an application in Zhaotong of Ynnan province(SW China), Geomorphology, Vol. 52, pp. 181-191. https://doi.org/10.1016/S0169-555X(02)00242-8
  13. Miller, D.J., Burnett, K.M. (2008), A probabilistic model of debris flow delivery to stream channels, demonstrated for the Coast Range of Oregon, Geomorphology, Vol. 94, pp. 184- 205. https://doi.org/10.1016/j.geomorph.2007.05.009
  14. Moriwaki, H. (1987), Geomorphological prediction of the travel distance of a debris, proc. China-Japan Field Workshop on Landslid, Xian-Lanzhou, China, pp. 79-84.
  15. Morton, D. M., and R. H. Campbell (1974), Spring mudflows at Wrightwood, southern California, Q. J. Eng. Geol., Vol. 7, pp. 377-384. https://doi.org/10.1144/GSL.QJEG.1974.007.04.09
  16. Pierson, T. C. (1980), Erosion and deposition by debris flows at Mt, Thomas, North Canterbury, New Zealand, Earth Surface Processes, Vol. 5, pp. 227-247. https://doi.org/10.1002/esp.3760050302
  17. Vallance, J.W., and Scott, K.M. (1997), The Osceola Mudflow from Mount Rainier; sedimentology and hazard implications of a huge clay-rich debris flow, Geological Society of America Bullentin, Vol. 109, pp. 143-163. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2
  18. Wieczorek, G. F., E. L. Harp, R. K. Mark, and A. K. Bhattacharyya (1988), Debris flows and other landslides in San Mateo, Santa Cruz, Contra Costa, Alameda, Napa, Solano, Sonoma, Lake, and Yolo counties, and factors influencing debris-flow distribution, in Landslides, Floods and Marine Effects of the Storm of January 3-5, in the San Francisco Bay Region, California, edited by S. D. Ellen and G. F. Wieczorek, pp. 133-162.

피인용 문헌

  1. 설악산 국립공원 지역 토석류 발생가능성 평가 기법의 개발 vol.110, pp.1, 2011, https://doi.org/10.14578/jkfs.2021.110.1.64