DOI QR코드

DOI QR Code

Effects of Synthetic Pseudoceramides on Sphingosine Kinase Activity in F9-12 Cells

  • Received : 2010.12.28
  • Accepted : 2011.01.21
  • Published : 2011.01.31

Abstract

Sphingosine kinase (SPHK) has a central role to control cell death and cell proliferation, which is suggested as a sphingolipid rheostat by regulating the levels between ceramide and sphingosine 1-phosphate (S1P). Therefore, physiological regulators of SPHK will be a good candidate to develop a new targeted drug. For this purpose, a series of synthetic pseudoceramides were tested by SPHK assay either cell-based or cell-free system. K10PC-5 strongly inhibited SPHK, while K6PC-5 activated SPHK in cell-free system. Specifically, K6PC-5 activated SPHK under the co-treatment with $50\;{\mu}M$ dimethylsphingosine (DMS), a SPHK inhibitor. Collectively, we developed a simple SPHK assay system to find SPHK regulatory pseudoceramide compounds, K10PC-5 and K6PC-5 which may be useful to cancer treatment or immune regulation like FTY720, a synthetic sphingolipid mimetic compound.

Keywords

References

  1. Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Baumruker, T. (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278, 47408-47415. https://doi.org/10.1074/jbc.M307687200
  2. Brinkmann, V. (2009) FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol. 158, 1173-1182. https://doi.org/10.1111/j.1476-5381.2009.00451.x
  3. Claus, R., Russwurm, S., Meisner, M., Kinscherf, R. and Deigner, H. P. (2000) Modulation of the ceramide level, a novel therapeutic concept? Curr. Drug Targets 1, 185-205. https://doi.org/10.2174/1389450003349272
  4. Hannun, Y. A. and Obeid, L. M. (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73-77. https://doi.org/10.1016/S0968-0004(00)88961-6
  5. Hengst, J. A., Wang, X., Sk, U. H., Sharma, A. K., Amin, S. and Yun, J. K. (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg. Med. Chem. Lett. 20, 7498-74502. https://doi.org/10.1016/j.bmcl.2010.10.005
  6. Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. and Kluk, M. J. (2001) Lysophospholipids-receptor revelations. Science 294, 1875-1878. https://doi.org/10.1126/science.1065323
  7. Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., Ghendy, K. and Racker, E. (1989) Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry 28, 6796-6800. https://doi.org/10.1021/bi00443a002
  8. Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A. and Obeid, L. M. (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. J. Biol. Chem. 38, 35257-35262.
  9. King, C. C., Zenke, F. T., Dawson, P. E., Dutil, E. M., Newton, A. C., Hemmings, B. A., and Bokoch, G. M. (2000) Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J. Biol. Chem. 275, 18108-18113. https://doi.org/10.1074/jbc.M909663199
  10. Kluk, M. J. and Hla, T. (2002) Signaling of sphingosine-1-phosphate via the SIP/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta. 1582, 72-80. https://doi.org/10.1016/S1388-1981(02)00139-7
  11. Kwon, Y. B., Kim, C. D., Youm, J. K., Gwak, H. S., Park, B. D., Lee, S. H., Jeon S., Kim, B. J., Seo, Y. J., Park, J. K. and Lee, J. H. (2007) Novel synthetic ceramide derivatives increase intracellular calcium levels and promote epidermal keratinocyte differentiation. J. Lipid Res. 48,1936-1943 https://doi.org/10.1194/jlr.M700185-JLR200
  12. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S. and Hla, T. (1996) Sphingosine 1-phosphate as a ligand for the G-protein-coupled receptor EDG-1. Science 279, 1552-1555.
  13. Maceyka, M., Payne, S.G., Milstien, S. and Spiegel, S. (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta. 1585, 193-201. https://doi.org/10.1016/S1388-1981(02)00341-4
  14. McDonald, O. B., Hannun, Y. A., Reynolds, C. H. and Sahyoun, N. (1991) Activation of casein kinase II by sphingosine. J. Biol. Chem. 266, 21773-21776.
  15. Megidish, T., White, T., Takio, K., Titani, K., Igarashi, Y. and Hakomori, S. (1995) The signal modulator protein 14-3-3 is a target of sphingosine- or N,N-dimethylsphingosine-dependent kinase in 3T3 (A31) cells. Biochem. Biophys. Res. Commun. 216, 739-747. https://doi.org/10.1006/bbrc.1995.2684
  16. Ogretmen, B. and Hannun, Y. A. (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist. Updat. 4, 368-377. https://doi.org/10.1054/drup.2001.0225
  17. Olivera, A., Rosenfeldt, H.M., Bektas, M., Wang, F., Ishii, I., Chun, J., Milstien, S. and Spiegel, S. (2003) Sphingosine kinase type 1 induces G12/13-mediated stress fi ber formation, yet promotes growth and survival independent of G protein-coupled receptors. J. Biol. Chem. 278, 46452-46460. https://doi.org/10.1074/jbc.M308749200
  18. Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S. and Spiegel, S. (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 554, 189-193. https://doi.org/10.1016/S0014-5793(03)01168-2
  19. Pitman, M. R. and Pitson S. M. (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr. Cancer Drug Targets 10, 354-367. https://doi.org/10.2174/156800910791208599
  20. Pyne, S. and Pyne, N. J. (2000) Sphingosine 1-phosphate signaling in mammalian cells. Biochem. J. 349, 385-402. https://doi.org/10.1042/0264-6021:3490385
  21. Pyne, N. J. and Pyne, S. (2008) Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signaling and termination. Biochim. Biophys. Acta. 1781, 467-476. https://doi.org/10.1016/j.bbalip.2008.05.004
  22. Sharma, A. K., Sk, U. H., Gimbor, M. A., Hengst, J. A., Wang, X., Yun, J. and Amin, S. (2010) Synthesis and bioactivity of sphingosine kinase inhibitors and their novel aspirinyl conjugated analogs. Eur. J. Med. Chem. 45, 4149-4156. https://doi.org/10.1016/j.ejmech.2010.06.005
  23. Spiegel, S., English, D. and Milstien, S. (2002) Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 12, 236-242. https://doi.org/10.1016/S0962-8924(02)02277-8
  24. Walter S., and Fassbender K. (2010) Spingolipids in Multiple Sclerosis. Cell Physiol. Biochem. 26, 49-56. https://doi.org/10.1159/000315105
  25. Watterson, K., Sankala, H., Milstien, S. and Spiegel, S. (2003) Pleiotropic actions of sphingosine-1-phosphate. Prog. Lipid Res. 42, 344-357. https://doi.org/10.1016/S0163-7827(03)00015-8
  26. Xia, P., Wang, L., Gamble J.R. and Vadas, M.A. (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J. Biol. Chem. 274, 34499-34505. https://doi.org/10.1074/jbc.274.48.34499
  27. Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., D’Andrea, R. J. and Vadas, M. A. (2000) An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527-1530. https://doi.org/10.1016/S0960-9822(00)00834-4