DOI QR코드

DOI QR Code

Neuroprotective Effect of the n-Hexane Extracts of Laurus nobilis L. in Models of Parkinson's Disease

  • Ham, Ah-Rom (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Shin, Jong-Heon (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Oh, Ki-Bong (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Sung-Jin (Department of Animal Biotechnology, Kangwon National University) ;
  • Nam, Kung-Woo (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Koo, Uk (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Kim, Kyeong-Ho (College of Pharmacy, Kangwon National University) ;
  • Mar, Woong-Chon (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2010.08.16
  • Accepted : 2010.10.18
  • Published : 2011.01.31

Abstract

Free radical scavenging and antioxidants have attracted attention as a way to prevent the progression of Parkinson's disease (PD). This study was carried out to investigate the effects of n-hexane fraction from Laurus nobilis L. (Lauraceae) leaves (HFL) on dopamine (DA)-induced intracellular reactive oxygen species (ROS) production and apoptosis in human neuroblastoma SH-SY5Y cells. Compared with apomorphine (APO, $IC_{50}=18.1\;{\mu}M$) as a positive control, the HFL $IC_{50}$ value for DA-induced apoptosis was $3.0\;{\mu}g/ml$, and two major compounds from HFL, costunolide and dehydrocostus lactone, were $7.3\;{\mu}M$ and $3.6\;{\mu}M$, respectively. HFL and these major compounds significantly inhibited ROS generation in DA-induced SH-SY5Y cells. A rodent 6-hydroxydopamine (6-OHDA) model of PD was employed to investigate the potential neuroprotective effects of HFL in vivo. 6-OHDA was injected into the substantia nigra of young adult rats and an immunohistochemical analysis was conducted to quantitate the tyrosine hydroxylase (TH)-positive neurons. HFL significantly inhibited 6-OHDA-induced TH-positive cell loss in the substantia nigra and also reduced DA induced $\alpha$-synuclein (SYN) formation in SH-SY5Y cells. These results indicate that HFL may have neuroprotective effects against DA-induced in vitro and in vivo models of PD.

Keywords

References

  1. Barzilai, A., Melamed, E. and Shirvan, A. (2001) Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease? Cell. Mol. Neurobiol. 21, 215-235. https://doi.org/10.1023/A:1010991020245
  2. Chen, J. J. and Obering, C. (2005) A review of intermittent subcutaneous apomorphine injections for the rescue management of motor fluctuations associated with advanced Parkinson's disease. Clin. Ther. 27, 1710-1724. https://doi.org/10.1016/j.clinthera.2005.11.016
  3. Chu, Y. and Kordower, J. H. (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease? Neurobiol. Dis. 25, 134-149. https://doi.org/10.1016/j.nbd.2006.08.021
  4. Chu, Y., Le, W., Kompoliti, K., Jankovic, J., Mufson, E. J. and Kordower, J. H. (2006) Nurr1 in Parkinson's disease and related disorders. J. Comp. Neurol. 494, 495-514. https://doi.org/10.1002/cne.20828
  5. Conforti, F., Statti, G., Uzunov, D. and Menichini, F. (2006) Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biol. Pharm. Bull. 29, 2056-2064 https://doi.org/10.1248/bpb.29.2056
  6. Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  7. Dedov, V. N., Cox, G. C. and Roufogalis, B. D. (2001) Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy. Micron 32, 653-660. https://doi.org/10.1016/S0968-4328(00)00065-2
  8. Desplats, P., Lee, H. J., Bae, E. J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E. and Lee S. J. (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. USA. 106, 13010-13015. https://doi.org/10.1073/pnas.0903691106
  9. Golde, T. E. (2009) The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol. Neurodegener. 4, 8. https://doi.org/10.1186/1750-1326-4-8
  10. Gomez-Isla, T., Irizarry, M. C., Mariash, A., Cheung, B., Soto, O., Schrump, S., Sondel, J., Kotilinek, L., Day, J., Schwarzschild, M. A., Cha, J. H., Newell, K., Miller, D. W., Ueda, K., Young, A. B., Hyman, B. T. and Ashe, K. H. (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol. Aging 24, 245-258. https://doi.org/10.1016/S0197-4580(02)00091-X
  11. Gomez-Santos, C., Ferrer, I., Santidrian, A. F., Barrachina, M., Gil, J. and Ambrosio, S. (2003) Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. Neurosci. Res. 73, 341-350. https://doi.org/10.1002/jnr.10663
  12. Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E. and Zhao, B. (2007) Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol. Psychiatry 62, 1353-1362. https://doi.org/10.1016/j.biopsych.2007.04.020
  13. Hughes, A. J., Bishop, S., Kleedorfer, B., Turjanski, N., Fernandez, W., Lees, A. J. and Stern, G. M. (1993) Subcutaneous apomorphine in Parkinson's disease: response to chronic administration for up to five years. Mov. Disord. 8, 165-170. https://doi.org/10.1002/mds.870080208
  14. Khan, M. M., Ahmad, A., Ishrat, T., Khan, M. B., Hoda, M. N., Khuwaja, G., Raza, S. S., Khan, A., Javed, H., Vaibhav, K. and Islam, F. (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Res. 1328, 139-151. https://doi.org/10.1016/j.brainres.2010.02.031
  15. Kobayashi, H., Oikawa, S., Umemura, S., Hirosawa, I. and Kawanishi, S. (2008) Mechanism of metal-mediated DNA damage and apoptosis induced by 6-hydroxydopamine in neuroblastoma SH-SY5Y cells. Free Radic. Res. 42, 651-660. https://doi.org/10.1080/10715760802270334
  16. Koch, E., Klaas, C. A., Rungeler, P., Castro, V., Mora, G., Vichnewski, W. and Merfort, I. (2001) Inhibition of inflammatory cytokine production and lymphocyte proliferation by structurally different sesquiterpene lactones correlates with their effect on activation of NF-kappaB. Biochem. Pharmacol. 62, 795-801. https://doi.org/10.1016/S0006-2952(01)00714-6
  17. LeBel, C. P., Ischiropoulos, H. and Bondy, S. C. (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol 5, 227-231. https://doi.org/10.1021/tx00026a012
  18. Lo Bianco, C., Schneider, B. L., Bauer, M., Sajadi, A., Brice, A., Iwatsubo, T. and Aebischer, P. (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA. 101, 17510-17515. https://doi.org/10.1073/pnas.0405313101
  19. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. and Mucke L. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265-1269. https://doi.org/10.1126/science.287.5456.1265
  20. Mattson, M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120-129. https://doi.org/10.1038/35040009
  21. Paxinos, G. and Watson C. (1998) The rat brain. Academic Press.
  22. Sayyah, M., Saroukhani, G., Peirovi, A. and Kamalinejad, M. (2003) Analgesic and anti-inflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytother. Res. 17, 733-736. https://doi.org/10.1002/ptr.1197
  23. Sayyah, M., Valizadeh, J. and Kamalinejad, M. (2002) Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures. Phytomedicine 9, 212-216. https://doi.org/10.1078/0944-7113-00113
  24. Tirmenstein, M. A., Hu, C. X., Scicchitano, M. S., Narayanan, P. K., Mc- Farland, D. C., Thomas, H. C. and Schwartz, L. W. (2005) Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells. Toxicol. In Vitro 19, 471-479. https://doi.org/10.1016/j.tiv.2005.01.006
  25. Von Coelln, R., Kugler, S., Bahr, M., Weller, M., Dichgans, J. and Schulz, J. B. (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J. Neurochem. 77, 263-273. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00236.x
  26. Watanabe, H., Muramatsu, Y., Kurosaki, R., Michimata, M., Matsubara, M., Imai, Y. and Araki T. (2004) Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: an immunohistological study. Eur. Neuropsychopharmacol. 14, 93-104. https://doi.org/10.1016/S0924-977X(03)00065-8
  27. Waxman, E. A. and Giasson, B. I. (2010) A novel, high-efficiency cellular model of fibrillar alpha-synuclein inclusions and the examination of mutations that inhibit amyloid formation. J. Neurochem. 113, 374-388. https://doi.org/10.1111/j.1471-4159.2010.06592.x
  28. Yoshikawa, M., Shimoda, H., Uemura, T., Morikawa, T., Kawahara, Y. and Matsuda, H. (2000) Alcohol absorption inhibitors from bay leaf (Laurus nobilis): structure-requirements of sesquiterpenes for the activity. Bioorg Med. Chem. 8, 2071-2077. https://doi.org/10.1016/S0968-0896(00)00127-9
  29. Yuan, H., Liang, L. W., Chen, Z. J., Ji, H. R., Wang, M. K., Zhang, H. Y., Li, C. and Xu, J. Y. (2006) R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat. Neurosci Bull. 22, 331-338.
  30. Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I. and Dexter, D. T. (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39, 1119-1125. https://doi.org/10.1080/10715760500233113
  31. Zhang, Y. and Zhao, B. (2003) Green tea polyphenols enhance sodium nitroprusside-induced neurotoxicity in human neuroblastoma SHSY5Y cells. J. Neurochem. 86, 1189-1200. https://doi.org/10.1046/j.1471-4159.2003.01928.x

Cited by

  1. Houttuyniae Herba protects rat primary cortical cells from Aβ25–35-induced neurotoxicity via regulation of calcium influx and mitochondria-mediated apoptosis vol.31, pp.7, 2012, https://doi.org/10.1177/0960327111433898
  2. The Na+/H+ exchanger-1 inhibitor cariporide prevents glutamate-induced necrotic neuronal death by inhibiting mitochondrial Ca2+ overload vol.90, pp.4, 2012, https://doi.org/10.1002/jnr.22818
  3. Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson׳s disease vol.159, 2015, https://doi.org/10.1016/j.jep.2014.11.007
  4. Dietary effect of dried bay leaves (Laurus nobilis ) meal on some biochemical parameters and on plasma oxidative status in New Zealand white growing rabbit vol.101, pp.5, 2017, https://doi.org/10.1111/jpn.12584
  5. Effects of magnolialide isolated from the leaves of Laurus nobilis L. (Lauraceae) on immunoglobulin E-mediated type I hypersensitivity in vitro vol.149, pp.2, 2013, https://doi.org/10.1016/j.jep.2013.07.015
  6. Bay Leaf : Potential Health Benefits vol.56, pp.4, 2011, https://doi.org/10.1097/nt.0000000000000493