DOI QR코드

DOI QR Code

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibits the LPS-Induced Inflammatory Reaction via Suppression of NF-κB Activity in RAW 264.7 Cells

  • Kang, Tae-Jin (Institute of Chronic Disease, Sahmyook University) ;
  • Moon, Jung-Sun (Traditional Medicines Research Institute, Sahmyook University) ;
  • Lee, Sook-Yeon (Traditional Medicines Research Institute, Sahmyook University) ;
  • Yim, Dongs-Sool (Traditional Medicines Research Institute, Sahmyook University)
  • Received : 2010.08.16
  • Accepted : 2010.10.18
  • Published : 2011.01.31

Abstract

Cirsium japonicum var. ussuriense is known to have a variety of biological activities, including anti-inflammatory, analgesic activity and antipyretic activity. In this study we investigated the role of polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense as an immune-modulator. PA was evaluated as inhibitors of some macrophage functions involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-$\alpha$), and nitric oxide (NO) in murine macrophage cell line, RAW264.7. There was no effect on cytokine production of macrophages by PA itself. However, PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ and TNF-$\alpha$ production by macrophages at a dose dependent manner. PA also suppressed the NO production of macrophages by LPS. LPS-induced NF-${\kappa}B$ activity was decreased by treatment of PA. Therefore, these results suggest that PA has anti-inflammatory effect by inhibiting the NF-${\kappa}B$ activation.

Keywords

References

  1. Aggarwal, B. B. and Natarajan, K. (1996) Tumor necrosis factors: developmentsduring the last decade. Eur. Cytokine. Netw. 7, 93-124.
  2. Cerretti, D. P., Kozlosky, C. J., Mosley, B., Nelson, N., Van Ness, K.,Greenstreet, T. A., March, C.J., Kronheim, S. R., Druck, T., Cannizzaro,L. A., Huebner, K. and Black, R. A. (1992) Molecular Cloningof the interleukin-1 beta converting enzyme. Science 256, 97-100. https://doi.org/10.1126/science.1373520
  3. Cho, W., Park, S. J., Shin, J. S., Noh, Y. S., Cho, E. J., Nam, J. H. andLee, K. T. (2008) Anti-inflammatory effects of the methanol extractof Polytrichum Commune via $NF-{\kappa}B$ inactivation in RAW 264.7 macrophage cells. Biomol. & Ther. 16, 385-393. https://doi.org/10.4062/biomolther.2008.16.4.385
  4. Doyle, S. L. and O'Neill, L. A. (2006) Toll-like receptors: from the discoveryof NFkappaB to new insights into transcriptional regulationsin innate immunity. Biochem. Pharmacol. 72, 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
  5. Feldmann, M., Brennan, F. M., Chantry, D., Haworth, C., Turner, M.,Katsikis, P., Londei, M., Abney, E., Buchan, G., Barrett, K., Corcoran,A., Kissonerghis, M., Zheng, R., Gruberck-Loebenstein, B.,Barkley, D., Chu, C. Q., Field, M. and Maini R. N. (1991) Cytokineassays: role in evaluation of the pathogenesis of autoimmunity. Immunol.Rev. 119, 105-123. https://doi.org/10.1111/j.1600-065X.1991.tb00580.x
  6. Ganzera, M., Pocher, A. and Stuppner, H. (2005) Differentiation ofCirsium japonicum and C. setosum by TLC and HPLC-MS. PhytochemAnal. 16, 205-209. https://doi.org/10.1002/pca.846
  7. Gordon, S. (2007) The macrophage: past, present and future. Eur. J.Immunol. 37(Suppl 1), S9-17. https://doi.org/10.1002/eji.200737638
  8. Huerre, M. R. and Gounon, P. (1996) Inflammation: pattern and newconcepts. Res. Immunol. 147, 417-434. https://doi.org/10.1016/S0923-2494(97)84407-0
  9. Jeong, da M., Jung, H. A. and Choi, J. S. (2008) Comparative antioxidantactivity and HPLC profiles of some selected Korean thistles.Arch. Pharm. Res. 31, 28-33. https://doi.org/10.1007/s12272-008-1116-7
  10. Jin, M., Bae, J., Chang, H. W. and Son, J. K. (2009) Anti-inflammatorycompounds from the leaves of Ailanthus altissima. Biomol. Ther.17, 86-91. https://doi.org/10.4062/biomolther.2009.17.1.86
  11. Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J.,Seo, E.K. and Lee, K. T. (2007) Inhibition of LPS-induced iNOS, COX-2and cytokines expression by poncirin through the NF-kappaB inactivationin RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30,2345-2351. https://doi.org/10.1248/bpb.30.2345
  12. Krasnow, S. W., Zhang, L. Q., Leung, K. Y., Osborn, L., Kunkel, S. andNabel, G. J. (1991) Tumor necrosis factor-alpha, inter leukin 1, andphorbol myristate acetate are independent activators of NF-kappaB which differentially activate T cells. Cytokine 3, 372-379. https://doi.org/10.1016/1043-4666(91)90040-K
  13. Nathan, C. (2002) Points of control in inflammation. Nature 420, 846-852. https://doi.org/10.1038/nature01320
  14. Ogura, T., Sutterwala, F. S. and Flavell, R. A. (2006). The inflammasome:first line of the immune response to cell stress. Cell 126, 659-662. https://doi.org/10.1016/j.cell.2006.08.002
  15. Park, J. C., Hur, J. M., Park, J. G., Kim, S. C., Park, J. R., Choi, S.H. and Choi, J. W. (2004) Effects of methanol extract of Cirsiumjaponicum var. ussuriense and its principle, hispidulin-7-O-neohesperidosideon hepatic alcohol-metabolizing enzymes and lipid peroxidationin ethanol-treated rats. Phytother. Res. 18, 19-24. https://doi.org/10.1002/ptr.1299
  16. Rankin, J. A. (2004) Biological mediators of acute inflammation. AACN. Clin. Issues. 15, 3-17. https://doi.org/10.1097/00044067-200401000-00002
  17. Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard,A. D., Kostura, M. J., Miller, T. K., Molineaux, S. M., Weidner,J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F. J., Chin,J., Ding, G. J., Egger, L. A., Gaffney, E. P., Limjuco, G., Palyha, O.C., Raju, S. M., Rolando, A. M., Salley, J. P., Yamin, T. T., Lee, T.D., Shively, J. E., MacCross, M., Mumford, R. A., Schmidt, J. A.and Tocci, M. J. (1992) A novel heterodimeric cysteine protease isrequired for $interleukin-1{\beta}$ processing in monocytes. Nature 356, 768 - 774 https://doi.org/10.1038/356768a0
  18. Vane, J. R., Mitchell, J. A., Appleton, I., Tomlinson, A., Bishop-Bailey,D., Croxtall, J. and Willoughby, D. A. (1994) Inducible isoforms ofcyclooxygenase and nitric-oxide synthase in inflammation. Proc.Natl. Acad. Sci. USA. 91, 2046-2050. https://doi.org/10.1073/pnas.91.6.2046

Cited by

  1. Protective effect of linarin against d-galactosamine and lipopolysaccharide-induced fulminant hepatic failure vol.738, 2014, https://doi.org/10.1016/j.ejphar.2014.05.024
  2. Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction vol.118, pp.5, 2016, https://doi.org/10.1016/j.acthis.2016.04.011
  3. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated fromAndrographis paniculata vol.2013, 2013, https://doi.org/10.1155/2013/210736
  4. Nanostructured, Self-Assembling Peptide K5 Blocks TNF-αand PGE2Production by Suppression of the AP-1/p38 Pathway vol.2012, 2012, https://doi.org/10.1155/2012/489810
  5. Prolidase-dependent mechanism of (Z)-8,9-epoxyheptadeca-1,11,14-triene-induced inhibition of collagen biosynthesis in cultured human skin fibroblasts vol.30, pp.6, 2016, https://doi.org/10.1080/14786419.2015.1038535
  6. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans vol.137, pp.3, 2011, https://doi.org/10.1016/j.jep.2011.07.048
  7. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells vol.2013, 2013, https://doi.org/10.1155/2013/787042
  8. The Antioxidant Effects of Isorhamnetin Contribute to Inhibit COX-2 Expression in Response to Inflammation: A Potential Role of HO-1 vol.37, pp.3, 2014, https://doi.org/10.1007/s10753-013-9789-6
  9. NLRP3 inflammasome activation in d- galactosamine and lipopolysaccharide-induced acute liver failure: Role of heme oxygenase-1 vol.65, 2013, https://doi.org/10.1016/j.freeradbiomed.2013.08.178
  10. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells vol.63, pp.1, 2014, https://doi.org/10.1007/s00011-013-0674-4
  11. Hepatoprotective effect of flavonoids from Cirsium japonicum DC on hepatotoxicity in comparison with silymarin vol.7, pp.5, 2016, https://doi.org/10.1039/C6FO00068A
  12. BAY 11-7082 Is a Broad-Spectrum Inhibitor with Anti-Inflammatory Activity against Multiple Targets vol.2012, 2012, https://doi.org/10.1155/2012/416036
  13. 8-(Tosylamino)quinoline inhibits macrophage-mediated inflammation by suppressing NF-κB signaling vol.33, pp.8, 2012, https://doi.org/10.1038/aps.2012.52
  14. Chitin from Cuttlebone Activates Inflammatory Cells to Enhance the Cell Migration vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.062
  15. Then-Hexane, ethylacetate, and butanol fractions from Hydnocarpi Semen enhanced wound healing in a mice ulcer model vol.34, pp.6, 2012, https://doi.org/10.3109/08923973.2012.681328
  16. Protective effect of wild ginseng cambial meristematic cells on d-galactosamine-induced hepatotoxicity in rats vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.04.002
  17. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid vol.2012, 2012, https://doi.org/10.1155/2012/781375
  18. 20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.300
  19. Polyacetylene Compound fromCirsium japonicumvar.ussurienseInhibited Caspase-1-mediated IL-1β Expression vol.12, pp.5, 2012, https://doi.org/10.4110/in.2012.12.5.213
  20. p38/AP-1 Pathway in Lipopolysaccharide-Induced Inflammatory Responses Is Negatively Modulated by Electrical Stimulation vol.2013, 2013, https://doi.org/10.1155/2013/183042