DOI QR코드

DOI QR Code

Characteristics of Lactose Hydrolysis by Immobilized β-Galactosidase on Chitosan Bead

Chitosan 담체에 고정화된 β-galactosidase에 의한 유당 분해 특성

  • 강병철 (동의대학교 화학공학과)
  • Received : 2010.11.29
  • Accepted : 2010.12.17
  • Published : 2011.01.30

Abstract

${\beta}$-Galactosidase was immobilized on chitosan bead by covalent bonding using glutaraldehyde. The characteristics of the immobilized enzyme were investigated. Maximum immobilization yield of 75% was obtained on chitosan bead. Optimum pH and temperature for the immobilized enzyme was 7.0 and $50^{\circ}C$, respectively. The immobilized enzyme showed a broader range of pH and temperature compared to a free one. A mathematical model for the operation of the immobilized enzyme in a packed-bed reactor was established and solved numerically. Under different inlet lactose concentrations and feed flow rate conditions, lactose conversion was measured in a packed-bed reactor. The experimental results of continuous operation in a packed-bed reactor were compared to theoretic results using Michaelis-Menten kinetics with competitive product inhibition and external mass transfer resistance. The model predicted the experimental data with errors less than 5%. Process optimization of continuous operation in a packed-bed reactor was also conducted. In a recirculation packed-bed operation, conversion of lactose was 97% in 3 hours. In a continuous packed-bed operation, the effect of flow rate and initial lactose concentration was investigated. Increasing flow rates and initial lactose concentration decreased the conversion of substrate.

${\beta}$-galactosidase를 공유결합으로 키토산 담체에 고정화하여 고정화 효소의 특성을 조사하였다. 또한 충진층 반응기에서 연속 조업을 실시하여 공정 최적화를 실시하였다. 키토산 담체에 대한 효소 고정화 효율은 최대 75%을 나타내었다. 고정화 효소에 대한 최적의 pH는 7.0이었고 최적의 온도는 $50^{\circ}C$였다. pH와 온도의 실험 범위에서 고정화 효소가 자유 효소에 비해 넓은 분포를 보여 pH와 온도에 덜 민감하게 작용하였다. 충진층 반응기에서 고정화 효소의 운전에 대한 수학적 모델을 세우고 수치적으로 해를 구하였다. 투입되는 유당의 농도와 유량에 대해서 충진층 반응기의 출구에서 유당의 전환율을 측정하였다. 실험 결과를 경쟁적 저해 효소 반응식과 물질전달 저항을 고려한 수학적 모델의 결과와 비교하였다. 모델의 결과는 실험 결과를 5% 이내의 오차로 잘 예측하였다. 그리고 충진층 반응기의 길이에 따른 유당 전환율과 연속운전 시간에 따른 효소의 비활성화를 고려한 전환율을 모델로부터 예측하였다.

Keywords

References

  1. Bayramoglua, G., Y. Tunalib, and M. Y. Arica. 2007. Immobilization of ${\beta}-galactosidase$ onto magnetic poly(GMA–MMA) beads for hydrolysis of lactose in bed reactor. Catal Commun. 8, 1094-1101. https://doi.org/10.1016/j.catcom.2006.10.029
  2. Biroa, E., A. Nemetha, C. Sisaka, T. Feczkoa, and J. Gyenisa. 2008. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Meth. 70, 1240-1246.
  3. Chen, W., H. Chen, Y. Xi, J. Yang, J. Zhao, F. Tian, H. P. Zhang, and H. Zhang. 2009. Immobilization of recombinant thermostable ${\beta}-galactosidase$ from Bacillus stearothermophilus for lactose hydrolysis in milk. J. Dairy Sci. 92, 491-498. https://doi.org/10.3168/jds.2008-1618
  4. Demirhan, E. and B. Ozbeka. 2007. Effect of glucose and galactose on whey lactose hydrolysis and enzyme stability under sonic treatment. J. Biotechnol. 131, S217.
  5. Dwevedia, A. and A. M. Kayastha. 2009. Optimal immobilization of ${\beta}-galactosidase$ from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresour. Technol. 100, 2667-2675. https://doi.org/10.1016/j.biortech.2008.12.048
  6. Dwidevi, P. N. and S. N. Upadhyay. 1977. Particle-fluid mass transfer in fixed and fluidized beds. Ind. Eng. Chem. Process Des. Dev. 16, 157-165. https://doi.org/10.1021/i260062a001
  7. Elnashar, M. M. M. and M. A. Yassin. 2009. Lactose hydrolysis by ${\beta}-galactosidase$ covalently immobilized to thermally stable biopolymers. Appl. Biochem. Biotechnol. 159, 426-437. https://doi.org/10.1007/s12010-008-8453-3
  8. Fogler, H. S. 2006. Elements of chemical reaction engineering. pp 784-785, 4th eds., Prentice Hall. Englewood Cliffs, New Jersey.
  9. Gekas, V. and M. Lopez-Leiva. 1985. Hydrolysis of lactose: a literature review. Process Biochem. 20, 2-12.
  10. Grosova1, Z., M. Rosenberg, M. Rebros, M. SMipocz, and B. Sedlackova1. 2008. Entrapment of ${\beta}-galactosidase$ in polyvinylalcohol hydrogel. Biotechnol. Lett. 30, 763-767. https://doi.org/10.1007/s10529-007-9606-0
  11. Haider, T. and Q. Husain. 2008. Concanavalin A layered calcium alginate–,starch beads immobilized ${\beta}-galactosidase$ as a therapeutic agent for lactose intolerant patients. Int. J. Pharm. 359, 1-6. https://doi.org/10.1016/j.ijpharm.2008.03.013
  12. Jurado, E., F. Camacho, G. Luzon, and J. M. Vicaria. 2002. A new kinetic model proposed for enzymatic hydrolysis of lactose by a ${\beta}-galactosidase$ from Kluyveromyces fragilis. Enzyme Microb. Technol. 31, 300-309. https://doi.org/10.1016/S0141-0229(02)00107-2
  13. Kang, B. C. 2010. Hydrolysis of egg yolk protein in a packed bed reactor by immobilized enzyme. J. Life Sci. 20, 1656-1661. https://doi.org/10.5352/JLS.2010.20.11.1656
  14. Li, X., Q. Zhoua, and X. D. Chen. 2007. Pilot-scale lactose hydrolysis using ${\beta}-galactosidase$ immobilized on cotton fabric. Chem. Eng. Process. 46, 497-500. https://doi.org/10.1016/j.cep.2006.02.011
  15. Lortie, R. 1994. Evaluation of the performance of immobilized enzyme reactors with Michaelis-Menten kinetics. J. Chem. Tech. Biotechnol. 60, 189-193. https://doi.org/10.1002/jctb.280600212
  16. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275. https://doi.org/10.1234/12345678
  17. Mateoa, C., J. M. Palomoa, G. Fernandez-Lorentea, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  18. Neria, D. F. M., V. M. Balcaoa, M. G. Carneiro-da-Cunhab, L. B. Carvalho, and J. A. Teixeiraa. 2008. Immobilization of ${\beta}-galactosidase$ from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catal. Commun. 9, 2334-2339. https://doi.org/10.1016/j.catcom.2008.05.022
  19. Panesar, P. S. 2008. Application of response surface methodology for maximal lactose hydrolysis in whole milk using permeabilised yeast cells. J. Acta Alimentaria 37, 191-203. https://doi.org/10.1556/AAlim.2007.0030
  20. Roy, I. and M. N. Gupta. 2003. Lactose hydrolysis by Lactozym immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem. 39, 325-332. https://doi.org/10.1016/S0032-9592(03)00086-4
  21. Szczodrak, J. 2000. Hydrolysis of lactose in whey permeate by immobilized ${\beta}-galactosidase$ from Kluyveromyces fragilis. J. Mol. Catal. B. 10, 631-637. https://doi.org/10.1016/S1381-1177(00)00187-9
  22. Wentworth, D. S., D. Skonberg, D. W. Donahue, and A. Ghanem. 2004. Application of chitosan-entrapped ${\beta}-galactosidase$ in packed-bed reactor system. J. Appl. Poly. Chem. 91, 1294-1299. https://doi.org/10.1002/app.13276
  23. Zhou, Q. and X. D. Chen. 2001. Immobilization of ${\beta}-galactosidase$ on graphite surface by glutaraldehyde. J. Food Eng. 48, 69-74. https://doi.org/10.1016/S0260-8774(00)00147-3

Cited by

  1. Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1365
  2. Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1471