DOI QR코드

DOI QR Code

Pyrococcus furiosus의 β-1,3-glucanase를 처리한 laminarin 분해 산물을 이용한 바이오 에탄올의 생산

Application of β-1,3-Glucanase from Pyrococcus furiosus for Ethanol Production using Laminarin

  • 김동균 (부경대학교 생물공학과) ;
  • 김은영 (부경대학교 생물공학과) ;
  • 김유리 (부경대학교 생물공학과) ;
  • 김중균 (부경대학교 생물공학과) ;
  • 이한승 (신라대학교 의생명과학대학 바이오식품소재학과) ;
  • 공인수 (부경대학교 생물공학과)
  • Kim, Dong-Gyun (Department of Biotechnology, Pukyong National University) ;
  • Kim, Eun-Young (Department of Biotechnology, Pukyong National University) ;
  • Kim, Yu-Ri (Department of Biotechnology, Pukyong National University) ;
  • Kim, Joong-Kyun (Department of Biotechnology, Pukyong National University) ;
  • Lee, Han-Seung (Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University) ;
  • Kong, In-Soo (Department of Biotechnology, Pukyong National University)
  • 투고 : 2010.09.27
  • 심사 : 2010.11.10
  • 발행 : 2011.01.30

초록

갈조류 유래의 다당류인 laminarin을 기질로써 호열성 미생물인 Pyrococcus furiosus의 $\beta$-1,3-glucanase와 반응 시킨 뒤, 분해산물을 yeast를 이용한 알코올 발효과정을 통하여 에탄올을 생산하고자 하는 연구를 수행하였다. 33 kDa (297 a.a, 894 bp)의 재조합 $\beta$-1,3-glucanase를 대장균에게 발현 후 순수하게 정제 하였으며, 정제한 $\beta$-1,3-glucanase와 laminarin을 반응시킨 결과 단당을 포함하여 oligo당 형태로 분해됨을 TLC와 HPLC로써 확인하였다. 그리고 이러한 분해산물을 에탄올 생산 배지의 유일한 탄소원으로써 첨가하여 yeast를 배양한 결과 48시간뒤에는 세포 외로 최소 0.3%의 알코올을 생산함을 gas chromatography로써 확인하였다. 따라서 $\beta$-1,3-glucanase와 laminarin의 최적 분해반응 및 yeast의 최적 알코올 발효 조건을 확립한다면 본 연구의 방법을 이용한 해조류로부터의 bio-ethanol의 생산을 성공적으로 수행 할 수 있으리라고 판단된다.

$\beta$-1,3-glucanase from Pyrococcus furiosus was applied for the saccharification of laminarin, which is a major oligo-saccharide component of brown algae, and the reaction mixture produced from laminarin was utilized as a substrate for alcohol fermentation using yeast. To prepare the recombinant $\beta$-1,3-glucanase, a $\beta$-1,3-glucanase gene was overexpressed in Escherichia coli and purified. Laminarin was degraded to an oligo- and mono-saccharide, such as glucose, after reaction with the purified recombinant $\beta$-1,3-glucanase, and the products after enzymatic treatment were confirmed by TLC and HPLC analysis. Decomposed laminarin after enzyme reaction was only added to the medium as a C-source for yeast alcohol production reaction. 0.3% alcohol production was detected from the cultured broth by gas chromatography after 48 hr of incubation. Further evaluation for optimal conditions of saccharification and alcohol fermentation can be suggested, as well as the possibility of using this enzymatic method to produce ethanol using laminarin.

키워드

참고문헌

  1. Borriss, R., K. Buettner, and P. Maentsaelae. 1990. Structure of the ${\beta}-1,3-1,4-glucanase$ gene of Bacillus macerans: homologies to other ${\beta}-glucanases$. Mol. Gen. Genet. 222, 278-283. https://doi.org/10.1007/BF00633829
  2. Bueno, A., C. R. Vazquez de Aldana, J. Correa, T. G. Villa, and F. del Rey. 1990. Synthesis and secretion of a Bacillus circulans WL-12 $1,3-1,4-{\beta}-D-glucanase$ in Escherichia coli. J. Bacteriol. 172, 2160-2167.
  3. Chung, J. H., G. S. Kwon, and H. S. Jang. 2008. Development of transportation bio-energy and its future. Korean J. Microbiol. Biotechnol. 36, 1-5.
  4. Dakhova, O. N., N. E. Kurepina, V. V. Zverlov, V. A. Svetlichnyi, and G. A. Velikodvorskaya. 1993. Cloning and expression in Escherichia coli of Thermotoga neapolitana genes coding for enzymes of carbohydrate substrate degradation. Biochem. Biophys. Res. Commun. 194, 1359-1364. https://doi.org/10.1006/bbrc.1993.1974
  5. Erfle, J. D., R. M. Teather, P. J. Wood, and J. E. Irvin. 1988. Purification and properties of a 1,3-1,4-3-D-glucanase (lichenase, 1,3-1,4-13-D-glucan 4-glucanohydrolase, EC 3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochem. J. 255, 833-841.
  6. Ferrer, P., T. Halkier, L. Hedegaard, D. Savva, I. Diers, and J. A. Asenjo. 1996. Nucleotide sequence of a ${\beta}-1,3-glucanase$ isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. J. Bacteriol. 178, 4751-4757.
  7. Fiske, M. J., K. L. Tobey-Fincher, and R. L. Fuchs. 1990. Cloning of two genes from Bacillus circulans WL-12 which encode $1,3-{\beta}-glucanase$ activity. J. Gen. Microbiol. 136, 2377-2383. https://doi.org/10.1099/00221287-136-12-2377
  8. Flint, H. J., C. A. McPherson, and J. Bisset. 1989. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and ${\beta}$ (1-3,1-4) glucanase activities. Appl. Environ. Microbiol. 55, 1230-1233.
  9. Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993. A bifunctional enzyme, with separate xylanase and ${\beta}$ (1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175, 2943-2951.
  10. Gosalbes, M. J., J. A. Perez-Gonzalez, R. Gonzalez, and A. Navarro. 1991. Two ${\beta}-glycanase$ genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an $endo-{\beta}-(1,3)-(1,4)-glucanase$. J. Bacteriol. 173, 7705-7710.
  11. Gueguen, Y., Voorhorst, W. G., Van der Oost, J., and De W. M. Vos. 1997. Molecular and biochemical characterization of an $endo-{\beta}-1,3-glucanase$ of the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 12, 31258-31264. https://doi.org/10.1074/jbc.272.50.31258
  12. Hofemeister, J., A. Kurtz, R. Borriss, and J. Knowles. 1986. The ${\beta}-glucanase$ gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 49, 177-187. https://doi.org/10.1016/0378-1119(86)90278-7
  13. Horikoshi, K., H. Koffler, and K. Arima. 1963. Purification and properties of ${\beta}-1,3-glucanase$ from the "lytic enzyme" of Bacillus circulans. Biochim. Biophys. Acta. 11, 267-275.
  14. Horn, S. J., I. M. Aasen, and K. Ostgaard. 2000. Ethanol production from seaweed extraction. J. Ind. Microbiol. Biotechnol. 25, 249-254. https://doi.org/10.1038/sj.jim.7000065
  15. Irvin, J. E. and R. M. Teather. 1988. Cloning and expression of a Bacteroides succinogenes mixed-linkage ${\beta}-glucanase$ ($1,3-1,4-{\beta}-D-glucan$ 4-glucanohydrolase) gene in Escherichia coli. Appl. Environ. Microbiol. 54, 2672-2676.
  16. Lee, S. M., I. S. Choi, S. K. Kim, and J. H. Lee. 2009. Production of bio-ethanol from brown algae by enzyme hydrolysis. Korean Sci. Biotechnol. Bioeng. J. 24, 483-488.
  17. Lloberas, J., J. A. Perez-Pons, and E. Querol. 1991. Molecular cloning, expression and nucleotide sequence of the $endo-{\beta}-1,3-1,4-D-glucanase$ gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur. J. Biochem. 197, 337-343. https://doi.org/10.1111/j.1432-1033.1991.tb15916.x
  18. Louw, M. E., S. J. Reid, and T. G. Watson. 1993. Characterization, cloning and sequencing of a thermostable endo-(1,3-1,4) ${\beta}-glucanase-encoding$ gene from an alkalophilic Bacillus brevis. Appl. Microbiol. Biotechnol. 38, 507-513.
  19. Mcilvaine, T. C. 1921. A buffer solution for colorimetric comparison. J. Biol. Chem. 49, 183-186.
  20. Murphy, N., D. J. McConnell, and B. A. Cantwell. 1984. The DNA sequence of the gene and genetic control sites for the excreted Bacillus subtilis enzyme ${\beta}-glucanase$. Nucleic Acids Res. 12, 5355-5367. https://doi.org/10.1093/nar/12.13.5355
  21. Nisizawa, K., T. Yamaguchi, N. Handa, M. Maeda, and H. Yamazaki. 1963. Chemical nature of a uronic acid-containing polysaccharide in the peritrophic membrane of the silkworm. J. Biochem. 54, 419-426.
  22. Rombouts, F. M. and H. J. Phaff. 1976. Lysis of yeast cell walls. Lytic ${\beta}-(1 leads to 3)-glucanases $from Bacillus circulans WL-12. J. Biochem. 16, 121-130.
  23. Sakellaris, H., J. M. Pemberton, and J. M. Manners. 1993. Characterization of an $endo-1,3(4)-{\beta}-D-glucanase$ gene from Cellvibrio mixtus. FEMS Microbiol. Lett. 109, 269-272.
  24. Sambrook, J. and D. W. Russell. 1989. Molecular cloning: a laboratory manual. 2nd eds., Cold Spring Harbor Laboratory Press, New York.
  25. Schimming, S., W. H. Schwarz, and W. L. Staudenbauer. 1991. Properties of a thermoactive ${\beta}-1,3-1,4-glucanase$ (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 177, 447-452. https://doi.org/10.1016/0006-291X(91)92004-4
  26. Schimming, S., W. H. Schwarz, and W. L. Staudenbauer. 1992. Structure of the Clostridium thermocellum gene licB and the encoded ${\beta}-1,3-1,4-glucanase.$ A catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur. J. Biochem. 204, 13-19. https://doi.org/10.1111/j.1432-1033.1992.tb16600.x
  27. Schwartz, W. H., S. Schimming, and W. L. Staudenbauer. 1988. Isolation of a Clostridium thermocellum gene encoding a thermoatable ${\beta}-1,3-glucanase$ (Laminarinase). Biotechnol. Lett. 10, 225-230. https://doi.org/10.1007/BF01024410
  28. Spilliaert, R., G. O. Hreggvidsson, J. K. Kristjansson, G. Eggertsson, and A. Palsdottir. 1994. Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable ${\beta}-glucanase$ and its expression in Escherichia coli. Eur. J. Biochem. 224, 923-930. https://doi.org/10.1111/j.1432-1033.1994.00923.x
  29. Yahata, N., T. Watanabe, Y. Nakamura, Y. Yamamoto, S. Kamimiya, and H. Tanaka. 1990. Structure of the gene encoding ${\beta}-1,3-glucanase$ A1 of Bacillus circulans WL-12. Gene 86, 113-117. https://doi.org/10.1016/0378-1119(90)90122-8
  30. Zverlov, V. V., D. A. Laptev, V. I. Tishkov, and G. A. Velikodvorskaja. 1991. Nucleotide sequence of the Clostridium thermocellum laminarinase gene. Biochem Biophys. Res. Commun. 181, 507-512. https://doi.org/10.1016/0006-291X(91)91217-Z

피인용 문헌

  1. Microbacterium oxydans, a novel alginate- and laminarin-degrading bacterium for the reutilization of brown-seaweed waste vol.130, 2013, https://doi.org/10.1016/j.jenvman.2013.08.064
  2. Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1083