DOI QR코드

DOI QR Code

Gas Sensing Characteristics of Sb-doped SnO2 Nanofibers

  • Choi, Joong-Ki (Department of Materials Science and Engineering, Korea University) ;
  • Hwang, In-Sung (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Sun-Jung (Department of Materials Science and Engineering, Korea University) ;
  • Park, Joon-Shik (Convergence Sensor and Device Research Center, Korea Electronics Technology Institute) ;
  • Park, Soon-Sup (Convergence Sensor and Device Research Center, Korea Electronics Technology Institute) ;
  • Dong, Ki-Young (Display and Nanosystem laboratory, college of engineering) ;
  • Ju, Byeong-Kwon (Display and Nanosystem laboratory, college of engineering) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.03.02
  • Accepted : 2010.08.02
  • Published : 2011.01.31

Abstract

Undoped and Sb-doped $SnO_2$ nanofibers were prepared by electrospinning and their responses to $H_2$, CO, $CH_4$, $C_3H_8$, and $C_2H_5OH$ were measured. In the undoped $SnO_2$ nanofibers, the gas response ($R_a/R_g$, $R_a$: resistance in air, $R_g$: resistance in gas) to 100 ppm $C_2H_5OH$ was very high(33.9), while that to the other gases ranged from 1.6 to 2.2. By doping with 2.65 wt% Sb, the response to 100 ppm $C_2H_5OH$ was decreased to 4.5, whereas the response to $H_2$ was increased to 3.0. This demonstrates the possibility of detecting a high $H_2$ concentration with minimum interference from $C_2H_5OH$ and the potential to control the gas selectivity by Sb doping.

Keywords

References

  1. N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors”, Catal. Surv. Asia, vol. 7, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  2. N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sens. Actuators, B, vol. 5, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4
  3. G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches”, Sens. Actuators, B, vol. 107, pp. 209-232, 2005. https://doi.org/10.1016/j.snb.2004.10.006
  4. D. E. Williams and K. F. E. Pratt, “Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides”, Sens. Actuators, B, vol. 70, pp. 214-221, 2000. https://doi.org/10.1016/S0925-4005(00)00572-4
  5. A. Greiner and J. H. Wendorff, “Electrospinning : a fascinating method for the preparation of ultrathin fibers”, Angew. Chem. Int. Ed., vol. 46, pp. 5670-5703, 2007. https://doi.org/10.1002/anie.200604646
  6. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel”, Adv. Mater., vol. 16, pp. 1151-1170, 2004. https://doi.org/10.1002/adma.200400719
  7. D. H. Reneker and I.-S. Chun, “Nanometre diameter fibers of polymer, produced by electrospinning”, Nanotechnology, vol. 7, pp. 216-223, 1996. https://doi.org/10.1088/0957-4484/7/3/009
  8. W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnology, vol. 17, pp. R89-R106, 2006. https://doi.org/10.1088/0957-4484/17/14/R01
  9. Y. Zhang, X. He, J. Li, Z. Miao and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun $SnO_2$ nanofibers”, Sens. Actuators, B, vol. 132, pp. 67-73, 2008. https://doi.org/10.1016/j.snb.2008.01.006
  10. I.-D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun $TiO_2$ nanofibers”, Nano Lett., vol. 6, pp. 2009-2013, 2006. https://doi.org/10.1021/nl061197h
  11. Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu, and C. Shao, "ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors", J. Phys. Chem. C, vol. 113, pp. 19397-19403, 2009. https://doi.org/10.1021/jp9070373
  12. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, “A highly sensitive and fast-responding sensor based on electrospun $In_{2}O_{3}$ nanofibers”, Sens. Actuators, B, vol. 142, pp. 61-65, 2009. https://doi.org/10.1016/j.snb.2009.07.031
  13. G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline $WO_3$ nanofibers and their application for ammonia sensing”, J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006. https://doi.org/10.1021/jp0635819
  14. D. Li, Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Lett., vol. 4, pp. 933-938, 2004. https://doi.org/10.1021/nl049590f
  15. D. Li and J. T. McCann, and Y. Xia, “Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces”, Small, vol. 1, pp. 83-86, 2005.
  16. A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, and K. Y. Rajpure, “Structural and optoelectronic properties of antimony incorporated tin oxide thin films”, J. Alloys and Compd., vol. 505, pp. 416-422, 2010. https://doi.org/10.1016/j.jallcom.2010.06.091
  17. V. Dusastre and D. E. Williams, “Sb(III) as a surface site for water adsorption on $Sb(Sb)O_2$, and its effect on catalytic activity and sensor behavior”, J. Phys. Chem. B, vol. 102, pp. 6732-6737, 1998. https://doi.org/10.1021/jp981391v
  18. Q. Wan and T. H. Wang, “Single-crystalline Sbdoped $SnO_2$ nanowires: synthesis and gas sensor application”, Chem. Comm., pp. 3841-3843, 2005.
  19. A. A. Zhukova, M. N. Rumyantseva, A. M. Abakumov, J. Arbiol, L. Calvo, and A. M. Gaskov, “Influence of antimony doping on structure and conductivity of tin oxide whiskers”, Thin Solid Films, vol. 518, pp. 1359-1362, 2009. https://doi.org/10.1016/j.tsf.2009.02.150
  20. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, “Relationshio between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides”, J. Mol. Catal. A: Chem., vol. 155, pp. 193-200, 2000. https://doi.org/10.1016/S1381-1169(99)00334-9
  21. S.-J. Kim, P.-S. Cho, J.-H. Lee, C.-Y. Kang, J.-S. Kim, and S.-J. Yoon, “Preparation of multicompositional gas sensing films by combinatorial solution deposition”, Ceram. Int., vol. 34, pp. 827-831, 2008. https://doi.org/10.1016/j.ceramint.2007.09.031
  22. T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, “Development of $SnO_2$-based ethanol gas sensor”, Sens. Actuators, B, vol. 9, pp. 63-69, 1992. https://doi.org/10.1016/0925-4005(92)80195-4
  23. A. Zima, A. Kock, and T. Maier, “In- and Sb-doped tin oxide nanocrystalline films for selective gas sensing”, Microelectron. Eng., vol. 87, pp. 1467-1470, 2010. https://doi.org/10.1016/j.mee.2009.11.103
  24. J.-H. Moon, J.-A. Park, S.-J. Lee, T.-H. Zyung, and I.-D. Kim, “Pd-doped $TiO_2$ nanofiber networks for gas sensor applications”, Sens. Actuators, B, vol. 149, pp. 301-305, 2010. https://doi.org/10.1016/j.snb.2010.06.033
  25. L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, “Improved $H_2$ sensing properties of Co-doped $SnO_2$ nanofibers”, Sens. Actuators, B, in press, 2010.

Cited by

  1. The role of catalytic cobalt-modified lanthanum ferrite nano-crystals in selective sensing of carbon monoxide vol.50, pp.2, 2015, https://doi.org/10.1007/s10853-014-8623-3