참고문헌
- M. Dorigo, “Optimization, learning, and natural algorithms,” Ph.D. dissertation (in Italian), Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy, 1992.
- M. Dorigo and L.M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. on Evol. Compiut., Vol. 1, pp. 53-66, Apr. 1997. https://doi.org/10.1109/4235.585892
- Christian Blum and Marco Dorigo, “The Hyper-Cube Framework for Ant Colony Optimization”, IEEE Trans. Systems, Man and Cybernetics, Vol. 34, No. 2, pp. 1161-1172, April. 2004 https://doi.org/10.1109/TSMCB.2003.821450
- G. Wu and H. Huang, “Theoretical Framework of Binary Ant Colony Optimization Algorithm”, IEEE Computer society, 2008
- S.-J. Huang, “Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches”, IEEE Trans. Energy Conv., Vol. 16, No. 3, pp. 296-301, Mar. 2001. https://doi.org/10.1109/60.937211
- Y. H. Hou, Y. W. Wu, L. J. Lu and X. Y. Xiong, “Generlized Ant Colony Optimization for Economic Dispatch of Power Systems”, IEEE, 2002.
- L. Shi, J. Hao, J. Zhou and G. Xu, “Ant colony optimisation algorithm with random perturbation behaviour to the problem of optimal unit commitment with probabilistic spinning reserve determination”, Electric Power Syst. Res., Vol. 69, pp. 295-303, 2004. https://doi.org/10.1016/j.epsr.2003.10.008
- S. P. Simon, N. P. Padhy and R. S. Anand, “An ant colony system for unit commitment problem,” Elect. Power Energy Syst., 2006
- S. Chusanapiputt, D. Nualhong and S. Phoomvuthisarn, “Relativity Pheromone Updating Strategy in Ant Colony Optimization for Constrained Unit Commitment Problem”, Power System Technology, IEEE, 2006
-
Ahmed Yousuf Saber and Tomomobu Senjyu, “Memory-Bounded Ant Colony Optimization with Dynamic Programming and
$A^{*}$ Local Search for Generator Planning”, IEEE Trans. on Power Systems, Vol. 22, No. 4, pp. 1965-1973, Nov. 2007 https://doi.org/10.1109/TPWRS.2007.907382 - A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control. New York: John Wiley & Sons, Inc., 1984.
- R. M. Burns and C. A. Gibson, “Optimization of priority lists for a unit commitment program,” in Proc. IEEE Power Engineering Society Summer Meeting, Paper A, 75 453-1, 1975.
- G. B. Sheble, “Solution of the unit commitment problem by the method of unit periods,” IEEE Trans. on Power Systems, Vol. 5, No. 1, pp. 257-260, Feb. 1990. https://doi.org/10.1109/59.49114
- Z. Ouyang and S. M. Shahidehpour, “An intelligent dynamic programming for unit commitment application,” IEEE Trans. on Power Systems, Vol. 6, No. 3, pp. 1203-1209, Aug. 1991. https://doi.org/10.1109/59.119267
- F. Zhuang and F. D. Galiana, “Toward a more rigorous and practical unit commitment by Lagrangian relaxation,” IEEE Trans. on Power Systems, Vol. 3, No. 2, pp. 763-770, May 1988. https://doi.org/10.1109/59.192933
- A. I. Cohen and M. Yoshimura, “A branch-and-bound algorithm for unit commitment,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, pp. 444-451, Feb. 1983. https://doi.org/10.1109/TPAS.1983.317714
- J. A. Muckstadt and R. C. Wilson, “An application of mixed-integer programming duality to scheduling thermal generating systems,” IEEE Trans. on Power Apparatus and Systems, pp. 1968-1978, 1968 https://doi.org/10.1109/TPAS.1968.292156
- S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem,” IEEE Trans. on Power Systems, Vol. 11, No. 1, pp. 83-92, Feb. 1996. https://doi.org/10.1109/59.485989
- K. A. Juste, H. Kita, E. Tanaka, and J. Hasegawa, “An evolutionary programming solution to the unit commitment problem,” IEEE Trans. on Power Systems, Vol. 14, pp. 1452-1459, Nov. 1999. https://doi.org/10.1109/59.801925
- D. N. Simopoulos, S. D. Kavatza, and C. D. Vournas, “Unit commitment by an enhanced simulated annealing algorithm,” IEEE Trans. on Power Systems, Vol. 21, No. 1, pp. 68-76, Feb. 2006. https://doi.org/10.1109/TPWRS.2005.860922
- B. Zhao, C. X. Guo, B. R. Bai and Y. J. Cao, “An improved particle swarm optimization algorithm for unit commitment,” Electrical Power & Energy Systems, Vol. 28, Issue 7, pp. 482-490, Sep. 2006. https://doi.org/10.1016/j.ijepes.2006.02.011
- Y.-W. Jeong, J.-B. Park, J.-R. Shin, and K. Y. Lee, “A thermal unit commitment approach using an improved quantum evolutionary algorithm”, Electric Power Components and Systems, Vol. 37, No. 7, pp. 770-786, July 2009. https://doi.org/10.1080/15325000902762331
피인용 문헌
- A feature selection method based on modified binary coded ant colony optimization algorithm vol.49, 2016, https://doi.org/10.1016/j.asoc.2016.08.011
- Binary ant colony optimization applied to variable screening in the Mahalanobis–Taguchi System vol.40, pp.2, 2013, https://doi.org/10.1016/j.eswa.2012.07.058
- Resolution of the unit commitment problems by using the hybrid Taguchi-ant colony system algorithm vol.49, 2013, https://doi.org/10.1016/j.ijepes.2013.01.007
- Mahalanobis–Taguchi system applied to variable selection in automotive pedals components using Gompertz binary particle swarm optimization vol.40, pp.7, 2013, https://doi.org/10.1016/j.eswa.2012.10.049
- Optimal identification of impact variables in a welding process for automobile seats mechanism by MTS-GBPSO approach vol.90, pp.1-4, 2017, https://doi.org/10.1007/s00170-016-9395-5
- Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems vol.57, pp.2, 2013, https://doi.org/10.1007/s10898-012-0006-1
- Consumers' Price Elasticity of Demand Modeling With Economic Effects on Electricity Markets Using an Agent-Based Model vol.4, pp.1, 2013, https://doi.org/10.1109/TSG.2012.2234487
- Classifier System and Co-evolutionary Hybrid Approach to Restoration Service of Electric Power Distribution Networks vol.7, pp.3, 2012, https://doi.org/10.5370/JEET.2012.7.3.288
- Application Research of Inner-plant Economical Operation by Multi-colony Ant Optimization vol.32, pp.13, 2018, https://doi.org/10.1007/s11269-018-2048-8
- Fast unsupervised feature selection based on the improved binary ant system and mutation strategy pp.1433-3058, 2019, https://doi.org/10.1007/s00521-018-03991-z