• Title/Summary/Keyword: Binary ant colony optimization

Search Result 3, Processing Time 0.018 seconds

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.

A Common Bitmap Block Truncation Coding for Color Images Based on Binary Ant Colony Optimization

  • Li, Zhihong;Jin, Qiang;Chang, Chin-Chen;Liu, Li;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2326-2345
    • /
    • 2016
  • For the compression of color images, a common bitmap usually is generated to replace the three individual bitmaps that originate from block truncation coding (BTC) of the R, G and B channels. However, common bitmaps generated by some traditional schemes are not the best possible because they do not consider the minimized distortion of the entire color image. In this paper, we propose a near-optimized common bitmap scheme for BTC using Binary Ant Colony Optimization (BACO), producing a BACO-BTC scheme. First, the color image is compressed by the BTC algorithm to get three individual bitmaps, and three pairs of quantization values for the R, G, and B channels. Second, a near-optimized common bitmap is generated with minimized distortion of the entire color image based on the idea of BACO. Finally, the color image is reconstructed easily by the corresponding quantization values according to the common bitmap. The experimental results confirmed that reconstructed image of the proposed scheme has better visual quality and less computational complexity than the referenced schemes.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.