DOI QR코드

DOI QR Code

Sequential Conjugation of 6-Aminohexanoic Acids and L-Arginines to Poly(amidoamine) Dendrimer to Modify Hydrophobicity and Flexibility of the Polymeric Gene Carrier

  • Yu, Gwang-Sig (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Yu, Ha-Na (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Choe, Yun-Hui (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Son, Sang-Jae (Graduate School of Analytical Science and Technology (GRAST), Chungnam National University) ;
  • Ha, Tai-Hwan (BioMonitoring Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Joon-Sig (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2010.11.29
  • Accepted : 2010.12.20
  • Published : 2011.02.20

Abstract

We synthesized a novel cationic dendrimer consisting of a poly(amidoamine) dendrimer (PAMAM, generation 4) backbone with both L-arginine (Arg) at the termini and 6-aminohexanoic acid (Ahx) between the original core polymer and the peripheral Arg units. The sequential chemical modification of PAMAM G4 with Ahx and Arg resulted in higher transfection efficiency with much less cytotoxicity. PAMAM G4-Ahx-Arg formed stable polyplexes at weight ratios of 8:1 or higher (polymer: plasmid DNA), and the mean polyplex diameter was $180{\pm}20nm$. PAMAM G4-Ahx-Arg showed much higher transfection ability than PAMAM G4 or PAMAM G4-Ahx. Furthermore, PAMAM G4-Ahx-Arg was much less cytotoxic than PEI25KD and PAMAM G4-Arg. In addition to Arg grafting of the PAMAM dendrimer, which endows a higher transfection capability, the addition of Ahx spacer increased dendrimer hydrophobicity, introduced flexibility into the conjugated amino acids, and reduced cytotoxicity. Overall, it appears that the concomitant modification of PAMAM with Ahx and Arg could lead to new PAMAM conjugates with better performances.

Keywords

References

  1. Cloninger, M. J. Curr. Opin. Chem. Biol. 2002, 6, 742. https://doi.org/10.1016/S1367-5931(02)00400-3
  2. Lee, C. C.; MacKay, J. A.; Frechet, J. M.; Szoka, F. C. Nat Biotechnol. 2005, 23,1517.
  3. Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. Proc. Natl. Acad. Sci. USA 1995, 92, 7297. https://doi.org/10.1073/pnas.92.16.7297
  4. Wu, G. Y.; Wu, C. H. J. Biol. Chem. 1987, 262, 4429.
  5. Behr, J. P. Chimia. 1997, 51, 34.
  6. Cheng, Y. Y.; Xu, Z. H.; Ma, M. L.; Xu, T. W. J. Pharm. Sci-Us 2008, 97, 123. https://doi.org/10.1002/jps.21079
  7. Kolhatkar, R. B.; Kitchens, K. M.; Swaan, P. W.; Ghandehari, H. Bioconj. Chem. 2007, 18, 2054. https://doi.org/10.1021/bc0603889
  8. Shukla, R.; Thomas, T. P.; Peters, J.; Kotlyar, A.; Myc, A.; Baker, J. R. Chem. Commun. 2005, 5739.
  9. Kang, H. M.; DeLong, R.; Fisher, M. H.; Juliano, R. L. Pharm. Res. 2005, 22, 2099. https://doi.org/10.1007/s11095-005-8330-5
  10. Choi, J. S.; Nam, K.; Park, J.; Kim, J. B.; Lee, J. K.; Park, J. J. Control Release 2004, 99, 445. https://doi.org/10.1016/j.jconrel.2004.07.027
  11. Goparaju, G. N.; Satishchandran, C.; Gupta, P. K. Int. J. Pharm. 2009, 369, 162. https://doi.org/10.1016/j.ijpharm.2008.10.028
  12. Obata, Y.; Saito, S.; Takeda, N.; Takeoka, S. Bba-Biomembranes 2009, 1788, 1148. https://doi.org/10.1016/j.bbamem.2009.02.014
  13. Kono, K.; Akiyama, H.; Takahashi, T.; Takagishi, T.; Harada, A. Bioconj. Chem. 2005, 16, 208. https://doi.org/10.1021/bc049785e
  14. Palmer, L. R.; Chen, T.; Lam, A. M. I.; Fenske, D. B.; Wong, K. F.; MacLachlan, I.; Cullis, P. R. BBA-Biomembranes 2003, 1611, 204. https://doi.org/10.1016/S0005-2736(03)00058-0
  15. Bajaj, A.; Kondaiah, P.; Bhattacharya, S. Biomacromolecules 2008, 9, 991. https://doi.org/10.1021/bm700930y
  16. Kakizawa, Y.; Kataoka, K. Adv. Drug Deliv. Rev. 2002, 54, 203. https://doi.org/10.1016/S0169-409X(02)00017-0
  17. Kurisawa, M.; Yokoyama, M.; Okano, T. J. Control Release 2000, 68, 1. https://doi.org/10.1016/S0168-3659(00)00246-7
  18. Klajnert, B.; Epand, R. M. Int. J. Pharm. 2005, 305, 154. https://doi.org/10.1016/j.ijpharm.2005.08.015
  19. Mintzer, M. A.; Simanek, E. E. Chem. Rev. 2009, 109, 259. https://doi.org/10.1021/cr800409e

Cited by

  1. PAMAM Dendrimers Conjugated with L-Arginine and γ-Aminobutyric Acid as Novel Polymeric Gene Delivery Carriers vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.579
  2. Polymer-Nucleic Acid Interactions vol.375, pp.2, 2011, https://doi.org/10.1007/s41061-017-0131-x
  3. The Importance of 6-Aminohexanoic Acid as a Hydrophobic, Flexible Structural Element vol.22, pp.22, 2011, https://doi.org/10.3390/ijms222212122