References
- Muller, N. C.; Nowack, B. Environ. Sci. Technol. 2008, 42, 4447. https://doi.org/10.1021/es7029637
- Chen, D.; Huang, Y. J. Colloid Interf. Sci. 2005, 255, 299.
- Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Mater. Lett. 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
- Mbhele, Z. H.; Salemane, M. G.; van Stittert, C. G. C. E.; Nedeljkovic, J. M.; Djoković, V.; Luyt, A. S. Chem. Mater. 2003, 15, 5019. https://doi.org/10.1021/cm034505a
- Hsu, S. L.; Wu, R. Mater. Lett. 2007, 61, 3719. https://doi.org/10.1016/j.matlet.2006.12.040
- Kai, Z.; Qiang, F.; Jinghui, F.; Dehui, A. Mater. Lett. 2005, 59, 3682. https://doi.org/10.1016/j.matlet.2005.06.063
- Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Mater. Lett. 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
- Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J. M. Colloid. Surf. A 2007, 303, 184. https://doi.org/10.1016/j.colsurfa.2007.03.050
- Tan, Y.; Jiang, L.; Zhu, D. J. Phys. Chem. B 2002, 106, 3131. https://doi.org/10.1021/jp012668l
- Logar, M.; Jancar, B.; Suvorov, D.; Kostanjsek, R. Nanotech. 2007, 18, 325601. https://doi.org/10.1088/0957-4484/18/32/325601
- Radziuk, D.; Skirtach, A.; Sukhorukov, G.; Shchukin, D.; Möhwald, H. Macromol. Rapid Commun. 2007, 28, 848. https://doi.org/10.1002/marc.200600895
- Prasad, B. L. V.; Arumugam, S. K.; Bala, T.; Sastry, M. Langmuir 2005, 21, 822. https://doi.org/10.1021/la047707+
- Chaudhari, V. R.; Haram, S. K.; Kulshreshtha, S. K.; Bellare, J. R.; Hassan,P. A. Colloids Surfaces A 2007, 301, 475. https://doi.org/10.1016/j.colsurfa.2007.01.025
- Wei, G.; Wang, L.; Zhou, H.; Liu, Z.; Song, Y.; Li, Z. Appl. Surf. Sci. 2005, 252, 1189. https://doi.org/10.1016/j.apsusc.2005.02.092
- Sui, Z. M.; Chen, X.; Wang, L. Y.; Xu, L. M.; Zhuang, W. C.; Chai, Y. C.; Yang, C. J. Physica. E 2006, 33, 308. https://doi.org/10.1016/j.physe.2006.03.151
- Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Small 2009, 5, 701. https://doi.org/10.1002/smll.200801546
- Wang, A. L.; Yin, H. B.; Ren, M.; Cheng, X. N.; Zhou, Q. F.; Zhang, X. F. Acta Metallugica Sinica 2006, 19, 362.
- Zhang, W.; Qiao, X. J. Chen, Mater. Sci. Eng. B 2007, 142, 1. https://doi.org/10.1016/j.mseb.2007.06.014
- Cho, K.-H.; Park, J.-E.; Osaka, T.; Park, S.-G. Electrochimica Acta 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
- Gloxhuber, C.; Künstler, K. Anionic Surfactants: Biochemistry, Toxicology, Dermatology, 2nd ed.; Marcel Dekker: New York, USA, 1992; p 27.
- Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T. NanoLett. 2004, 4, 2163. https://doi.org/10.1021/nl048715d
Cited by
- High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles vol.22, pp.45, 2012, https://doi.org/10.1039/c2jm35072f
- Inorganic material coatings and their effect on cytotoxicity vol.41, pp.6, 2012, https://doi.org/10.1039/C1CS15252A
- Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities vol.50, pp.1, 2012, https://doi.org/10.9713/kcer.2012.50.1.112
- Surface plasmon resonance study of (positive, neutral, negative) vesicles rupture by AgNPs’ attack for screening of cytotoxicity induced by nanoparticles vol.30, pp.2, 2013, https://doi.org/10.1007/s11814-012-0131-z
- Physicochemical properties between pristine and aged AgNPs for the evaluation of nanotoxicity vol.30, pp.6, 2013, https://doi.org/10.1007/s11814-013-0073-0
- Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.231
- Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets vol.5, pp.2, 2013, https://doi.org/10.1021/am302534k
- Effect of decrease in the size of Pt nanoparticles using sodium phosphinate on electrochemically active surface area vol.16, pp.2, 2014, https://doi.org/10.1007/s11051-013-2237-6
- Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies vol.22, pp.4, 2014, https://doi.org/10.1007/s13233-014-2054-5
- Enzymatic Functionalization of Cork Surface with Antimicrobial Hybrid Biopolymer/Silver Nanoparticles vol.7, pp.18, 2015, https://doi.org/10.1021/acsami.5b01670
- by Stabilization vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/7135852
- Toxicity of nanoparticle surface coating agents: Structure-cytotoxicity relationship vol.34, pp.3, 2016, https://doi.org/10.1080/10590501.2016.1202762
- In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system vol.6, pp.27, 2016, https://doi.org/10.1039/C5RA26704H
- A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant vol.19, pp.41, 2017, https://doi.org/10.1039/C7CP04662F
- nanoparticles vol.4, pp.1, 2017, https://doi.org/10.1039/C6EN00339G
- The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers vol.23, pp.6, 2012, https://doi.org/10.1088/0957-4484/23/6/065102
- Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum vol.88, pp.8, 2014, https://doi.org/10.1128/JVI.03256-13
- to polyaniline/Ag nanocomposite in the presence of sodium dodecyl sulfate and phenylene diamine vol.36, pp.2, 2014, https://doi.org/10.1002/pc.22937
- embryos pp.1743-5404, 2019, https://doi.org/10.1080/17435390.2018.1498931
- Molecular toxicity mechanism of nanosilver vol.22, pp.1, 2011, https://doi.org/10.1016/j.jfda.2014.01.010
- Behavior of silver nanoparticles in wastewater: systematic investigation on the combined effects of surfactants and electrolytes in model systems vol.4, pp.12, 2011, https://doi.org/10.1039/c8ew00317c
- Characterization of Enhanced Antibacterial Effects of Silver Loaded Cerium Oxide Catalyst vol.34, pp.6, 2011, https://doi.org/10.13005/ojc/340629
- Synthesis of Silver Nanoparticles Using Moringa oleifera L. Leaf Extract as Bioreductor vol.967, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/msf.967.145
- Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles vol.64, pp.None, 2011, https://doi.org/10.1016/j.calphad.2018.11.013
- Understanding the stability and durability of laser-generated Ag nanoparticles and effects on their antibacterial activities vol.10, pp.3, 2011, https://doi.org/10.1088/2043-6254/ab2e6e
- Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles vol.6, pp.10, 2011, https://doi.org/10.1088/2053-1591/ab3fed
- Silver nanorods induced oxidative stress and chromosomal aberrations in the Allium cepa model vol.14, pp.2, 2011, https://doi.org/10.1049/iet-nbt.2019.0224
- Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth vol.21, pp.10, 2011, https://doi.org/10.3390/ijms21103441
- Stability issues and approaches to stabilised nanoparticles based drug delivery system vol.28, pp.5, 2020, https://doi.org/10.1080/1061186x.2020.1722137
- Evaluation of Cytotoxicity and Antibacterial Activity of a New Class of Silver Citrate-Based Compounds as Endodontic Irrigants vol.13, pp.21, 2020, https://doi.org/10.3390/ma13215019
- Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure vol.11, pp.3, 2011, https://doi.org/10.3390/nano11030744