DOI QR코드

DOI QR Code

Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

  • Bae, Eun-Joo (World Class University (WCU) Program of Chemical Convergence for Energy & Environment () ;
  • Park, Hee-Jin (World Class University (WCU) Program of Chemical Convergence for Energy & Environment () ;
  • Park, Jun-Su (World Class University (WCU) Program of Chemical Convergence for Energy & Environment () ;
  • Yoon, Je-Yong (World Class University (WCU) Program of Chemical Convergence for Energy & Environment () ;
  • Kim, Young-Hun (Department of Chemical Engineering, Kwangwoon University) ;
  • Choi, Kyung-Hee (National Institute of Environmental Research) ;
  • Yi, Jong-Heop (World Class University (WCU) Program of Chemical Convergence for Energy & Environment ()
  • Received : 2010.06.15
  • Accepted : 2010.12.09
  • Published : 2011.02.20

Abstract

Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

Keywords

References

  1. Muller, N. C.; Nowack, B. Environ. Sci. Technol. 2008, 42, 4447. https://doi.org/10.1021/es7029637
  2. Chen, D.; Huang, Y. J. Colloid Interf. Sci. 2005, 255, 299.
  3. Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Mater. Lett. 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
  4. Mbhele, Z. H.; Salemane, M. G.; van Stittert, C. G. C. E.; Nedeljkovic, J. M.; Djoković, V.; Luyt, A. S. Chem. Mater. 2003, 15, 5019. https://doi.org/10.1021/cm034505a
  5. Hsu, S. L.; Wu, R. Mater. Lett. 2007, 61, 3719. https://doi.org/10.1016/j.matlet.2006.12.040
  6. Kai, Z.; Qiang, F.; Jinghui, F.; Dehui, A. Mater. Lett. 2005, 59, 3682. https://doi.org/10.1016/j.matlet.2005.06.063
  7. Khanna, P. K.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. V. Mater. Lett. 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
  8. Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J. M. Colloid. Surf. A 2007, 303, 184. https://doi.org/10.1016/j.colsurfa.2007.03.050
  9. Tan, Y.; Jiang, L.; Zhu, D. J. Phys. Chem. B 2002, 106, 3131. https://doi.org/10.1021/jp012668l
  10. Logar, M.; Jancar, B.; Suvorov, D.; Kostanjsek, R. Nanotech. 2007, 18, 325601. https://doi.org/10.1088/0957-4484/18/32/325601
  11. Radziuk, D.; Skirtach, A.; Sukhorukov, G.; Shchukin, D.; Möhwald, H. Macromol. Rapid Commun. 2007, 28, 848. https://doi.org/10.1002/marc.200600895
  12. Prasad, B. L. V.; Arumugam, S. K.; Bala, T.; Sastry, M. Langmuir 2005, 21, 822. https://doi.org/10.1021/la047707+
  13. Chaudhari, V. R.; Haram, S. K.; Kulshreshtha, S. K.; Bellare, J. R.; Hassan,P. A. Colloids Surfaces A 2007, 301, 475. https://doi.org/10.1016/j.colsurfa.2007.01.025
  14. Wei, G.; Wang, L.; Zhou, H.; Liu, Z.; Song, Y.; Li, Z. Appl. Surf. Sci. 2005, 252, 1189. https://doi.org/10.1016/j.apsusc.2005.02.092
  15. Sui, Z. M.; Chen, X.; Wang, L. Y.; Xu, L. M.; Zhuang, W. C.; Chai, Y. C.; Yang, C. J. Physica. E 2006, 33, 308. https://doi.org/10.1016/j.physe.2006.03.151
  16. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Small 2009, 5, 701. https://doi.org/10.1002/smll.200801546
  17. Wang, A. L.; Yin, H. B.; Ren, M.; Cheng, X. N.; Zhou, Q. F.; Zhang, X. F. Acta Metallugica Sinica 2006, 19, 362.
  18. Zhang, W.; Qiao, X. J. Chen, Mater. Sci. Eng. B 2007, 142, 1. https://doi.org/10.1016/j.mseb.2007.06.014
  19. Cho, K.-H.; Park, J.-E.; Osaka, T.; Park, S.-G. Electrochimica Acta 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
  20. Gloxhuber, C.; Künstler, K. Anionic Surfactants: Biochemistry, Toxicology, Dermatology, 2nd ed.; Marcel Dekker: New York, USA, 1992; p 27.
  21. Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T. NanoLett. 2004, 4, 2163. https://doi.org/10.1021/nl048715d

Cited by

  1. High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles vol.22, pp.45, 2012, https://doi.org/10.1039/c2jm35072f
  2. Inorganic material coatings and their effect on cytotoxicity vol.41, pp.6, 2012, https://doi.org/10.1039/C1CS15252A
  3. Nano-safety Management and Exposure Assessment of Nanomaterials Producing Facilities vol.50, pp.1, 2012, https://doi.org/10.9713/kcer.2012.50.1.112
  4. Surface plasmon resonance study of (positive, neutral, negative) vesicles rupture by AgNPs’ attack for screening of cytotoxicity induced by nanoparticles vol.30, pp.2, 2013, https://doi.org/10.1007/s11814-012-0131-z
  5. Physicochemical properties between pristine and aged AgNPs for the evaluation of nanotoxicity vol.30, pp.6, 2013, https://doi.org/10.1007/s11814-013-0073-0
  6. Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.231
  7. Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets vol.5, pp.2, 2013, https://doi.org/10.1021/am302534k
  8. Effect of decrease in the size of Pt nanoparticles using sodium phosphinate on electrochemically active surface area vol.16, pp.2, 2014, https://doi.org/10.1007/s11051-013-2237-6
  9. Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies vol.22, pp.4, 2014, https://doi.org/10.1007/s13233-014-2054-5
  10. Enzymatic Functionalization of Cork Surface with Antimicrobial Hybrid Biopolymer/Silver Nanoparticles vol.7, pp.18, 2015, https://doi.org/10.1021/acsami.5b01670
  11. by Stabilization vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/7135852
  12. Toxicity of nanoparticle surface coating agents: Structure-cytotoxicity relationship vol.34, pp.3, 2016, https://doi.org/10.1080/10590501.2016.1202762
  13. In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system vol.6, pp.27, 2016, https://doi.org/10.1039/C5RA26704H
  14. A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant vol.19, pp.41, 2017, https://doi.org/10.1039/C7CP04662F
  15. nanoparticles vol.4, pp.1, 2017, https://doi.org/10.1039/C6EN00339G
  16. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers vol.23, pp.6, 2012, https://doi.org/10.1088/0957-4484/23/6/065102
  17. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum vol.88, pp.8, 2014, https://doi.org/10.1128/JVI.03256-13
  18. to polyaniline/Ag nanocomposite in the presence of sodium dodecyl sulfate and phenylene diamine vol.36, pp.2, 2014, https://doi.org/10.1002/pc.22937
  19. embryos pp.1743-5404, 2019, https://doi.org/10.1080/17435390.2018.1498931
  20. Molecular toxicity mechanism of nanosilver vol.22, pp.1, 2011, https://doi.org/10.1016/j.jfda.2014.01.010
  21. Behavior of silver nanoparticles in wastewater: systematic investigation on the combined effects of surfactants and electrolytes in model systems vol.4, pp.12, 2011, https://doi.org/10.1039/c8ew00317c
  22. Characterization of Enhanced Antibacterial Effects of Silver Loaded Cerium Oxide Catalyst vol.34, pp.6, 2011, https://doi.org/10.13005/ojc/340629
  23. Synthesis of Silver Nanoparticles Using Moringa oleifera L. Leaf Extract as Bioreductor vol.967, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/msf.967.145
  24. Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles vol.64, pp.None, 2011, https://doi.org/10.1016/j.calphad.2018.11.013
  25. Understanding the stability and durability of laser-generated Ag nanoparticles and effects on their antibacterial activities vol.10, pp.3, 2011, https://doi.org/10.1088/2043-6254/ab2e6e
  26. Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles vol.6, pp.10, 2011, https://doi.org/10.1088/2053-1591/ab3fed
  27. Silver nanorods induced oxidative stress and chromosomal aberrations in the Allium cepa model vol.14, pp.2, 2011, https://doi.org/10.1049/iet-nbt.2019.0224
  28. Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth vol.21, pp.10, 2011, https://doi.org/10.3390/ijms21103441
  29. Stability issues and approaches to stabilised nanoparticles based drug delivery system vol.28, pp.5, 2020, https://doi.org/10.1080/1061186x.2020.1722137
  30. Evaluation of Cytotoxicity and Antibacterial Activity of a New Class of Silver Citrate-Based Compounds as Endodontic Irrigants vol.13, pp.21, 2020, https://doi.org/10.3390/ma13215019
  31. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure vol.11, pp.3, 2011, https://doi.org/10.3390/nano11030744