DOI QR코드

DOI QR Code

Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

  • Received : 2010.09.08
  • Accepted : 2010.12.03
  • Published : 2011.02.20

Abstract

We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs.

Keywords

References

  1. Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H. Environ. Toxicol. Pharmacol. 2005, 20, 351. https://doi.org/10.1016/j.etap.2005.03.007
  2. Zheng, W.; Aschner, M.; Ghersi-Egea, J-F. Toxicol. Appl. Pharmacol. 2003, 192, 1. https://doi.org/10.1016/S0041-008X(03)00251-5
  3. Lewis, M.; Chancy, C. Chemosphere 2008, 70, 2016. https://doi.org/10.1016/j.chemosphere.2007.09.020
  4. Vil’pan, Y. A.; Grinshtein, I. L.; Akatove, A. A.; Gucer, S. Anal. Chem. 2005, 60, 45. https://doi.org/10.1007/s10809-005-0047-4
  5. Gao, T.; Lee, K. M.; Heo, J.; Yang, S. I. Bull. Korean Chem. Soc. 2010, 31, 2100. https://doi.org/10.5012/bkcs.2010.31.7.2100
  6. Malashikhin, S. A.; Baldridge, K. K.; Finney, N. S. Org. Lett. 2010, 5, 940.
  7. Han, N. S.; Shim, H. S.; Park, S. M.; Song, J. K. Bull. Korean Chem. Soc. 2009, 30, 2199. https://doi.org/10.5012/bkcs.2009.30.10.2199
  8. Daniel, M-C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  9. Huang, C-C.; Chang, H-T. Anal. Chem. 2006, 78, 8332. https://doi.org/10.1021/ac061487i
  10. Lombardi, J. R.; Birke, R. L. Acc. Chem. Res. 2009, 42, 734. https://doi.org/10.1021/ar800249y
  11. Joo, S-W. Bull. Korean Chem. Soc. 2008, 29, 1761. https://doi.org/10.5012/bkcs.2008.29.9.1761
  12. Schatz, G. C.; Van Duyne, R. P. In Handbook of Vibrational Spectroscopy; Chalmers, J. M., Griffiths, P. R., Eds.; John Wiley & Sons: New York, 2002; Vol.1, p 759.
  13. Sarkar, J.; Chowdhury, J.; Pal, P.; Talapatra, G. B. Vib. Spectrosc. 2006, 41, 90. https://doi.org/10.1016/j.vibspec.2006.01.012
  14. Zamarion, V. M.; Timm, R. A.; Araki, K.; Toma, H. E. Inorg. Chem. 2008, 47, 2934. https://doi.org/10.1021/ic800122v
  15. Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J.; deMello, A. J. Anal Bioanal. Chem. 2009, 394, 1827. https://doi.org/10.1007/s00216-009-2832-7
  16. Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y. Anal. Chim. Acta 2007, 599, 134. https://doi.org/10.1016/j.aca.2007.07.074
  17. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  18. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, USA., 2006; p 55.
  19. Zhu, J.; Li, J-J.; Zhao, J-W. Sens. Act. B 2009, 138, 9-13. https://doi.org/10.1016/j.snb.2009.02.054
  20. Liu, B.; Liu, Z.; Cao, Z. J. Luminesc. 2006, 118, 99-105. https://doi.org/10.1016/j.jlumin.2005.08.001
  21. Griffiths, J.; Lee, W. J. Dyes. Pigm. 2003, 57, 107-114. https://doi.org/10.1016/S0143-7208(02)00118-3
  22. Emaus, R. K.; Grunwald, R.; Lemasters, J. J. Biochim. Biophys. Acta 1986, 850, 436. https://doi.org/10.1016/0005-2728(86)90112-X
  23. Jensen, L.; Schatz, G. C. J. Phys. Chem. A 2006, 110, 5973. https://doi.org/10.1021/jp0610867
  24. Saini, G. S. S.; Amit, S.; Sarvpreet, K.; Bindra, K. S.; Vasant, S.; Tripathi, S. K.; Mhahajan, C. G. J. Mol. Struct. 2009, 931, 10. https://doi.org/10.1016/j.molstruc.2009.05.015
  25. Guthmuller, J.; Champagne, B. ChemPhysChem. 2008, 9, 1667. https://doi.org/10.1002/cphc.200800253

Cited by

  1. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions vol.4, pp.19, 2012, https://doi.org/10.1039/c2nr31410j
  2. Hg(II) Raman sensor of poly-L-lysine conformation change on gold nanoparticles vol.8, pp.4, 2014, https://doi.org/10.1007/s13206-014-8409-3
  3. Raman Spectroscopy of Di-(2-picolyl)amine on Gold Nanoparticles for Hg(II) Detection vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10054
  4. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10058
  5. Detect, Remove and Reuse: A New Paradigm in Sensing and Removal of Hg (II) from Wastewater via SERS-Active ZnO/Ag Nanoarrays vol.49, pp.3, 2015, https://doi.org/10.1021/es503527e
  6. SERS-based mercury ion detections: principles, strategies and recent advances vol.59, pp.1, 2016, https://doi.org/10.1007/s11426-015-5504-9
  7. via cation–π interactions vol.13, pp.39, 2017, https://doi.org/10.1039/C7SM01447C
  8. ) ions in aqueous solution vol.7, pp.75, 2017, https://doi.org/10.1039/C7RA07992C
  9. CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3610