References
- Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H. Environ. Toxicol. Pharmacol. 2005, 20, 351. https://doi.org/10.1016/j.etap.2005.03.007
- Zheng, W.; Aschner, M.; Ghersi-Egea, J-F. Toxicol. Appl. Pharmacol. 2003, 192, 1. https://doi.org/10.1016/S0041-008X(03)00251-5
- Lewis, M.; Chancy, C. Chemosphere 2008, 70, 2016. https://doi.org/10.1016/j.chemosphere.2007.09.020
- Vil’pan, Y. A.; Grinshtein, I. L.; Akatove, A. A.; Gucer, S. Anal. Chem. 2005, 60, 45. https://doi.org/10.1007/s10809-005-0047-4
- Gao, T.; Lee, K. M.; Heo, J.; Yang, S. I. Bull. Korean Chem. Soc. 2010, 31, 2100. https://doi.org/10.5012/bkcs.2010.31.7.2100
- Malashikhin, S. A.; Baldridge, K. K.; Finney, N. S. Org. Lett. 2010, 5, 940.
- Han, N. S.; Shim, H. S.; Park, S. M.; Song, J. K. Bull. Korean Chem. Soc. 2009, 30, 2199. https://doi.org/10.5012/bkcs.2009.30.10.2199
- Daniel, M-C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
- Huang, C-C.; Chang, H-T. Anal. Chem. 2006, 78, 8332. https://doi.org/10.1021/ac061487i
- Lombardi, J. R.; Birke, R. L. Acc. Chem. Res. 2009, 42, 734. https://doi.org/10.1021/ar800249y
- Joo, S-W. Bull. Korean Chem. Soc. 2008, 29, 1761. https://doi.org/10.5012/bkcs.2008.29.9.1761
- Schatz, G. C.; Van Duyne, R. P. In Handbook of Vibrational Spectroscopy; Chalmers, J. M., Griffiths, P. R., Eds.; John Wiley & Sons: New York, 2002; Vol.1, p 759.
- Sarkar, J.; Chowdhury, J.; Pal, P.; Talapatra, G. B. Vib. Spectrosc. 2006, 41, 90. https://doi.org/10.1016/j.vibspec.2006.01.012
- Zamarion, V. M.; Timm, R. A.; Araki, K.; Toma, H. E. Inorg. Chem. 2008, 47, 2934. https://doi.org/10.1021/ic800122v
- Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J.; deMello, A. J. Anal Bioanal. Chem. 2009, 394, 1827. https://doi.org/10.1007/s00216-009-2832-7
- Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y. Anal. Chim. Acta 2007, 599, 134. https://doi.org/10.1016/j.aca.2007.07.074
- Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
- Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, USA., 2006; p 55.
- Zhu, J.; Li, J-J.; Zhao, J-W. Sens. Act. B 2009, 138, 9-13. https://doi.org/10.1016/j.snb.2009.02.054
- Liu, B.; Liu, Z.; Cao, Z. J. Luminesc. 2006, 118, 99-105. https://doi.org/10.1016/j.jlumin.2005.08.001
- Griffiths, J.; Lee, W. J. Dyes. Pigm. 2003, 57, 107-114. https://doi.org/10.1016/S0143-7208(02)00118-3
- Emaus, R. K.; Grunwald, R.; Lemasters, J. J. Biochim. Biophys. Acta 1986, 850, 436. https://doi.org/10.1016/0005-2728(86)90112-X
- Jensen, L.; Schatz, G. C. J. Phys. Chem. A 2006, 110, 5973. https://doi.org/10.1021/jp0610867
- Saini, G. S. S.; Amit, S.; Sarvpreet, K.; Bindra, K. S.; Vasant, S.; Tripathi, S. K.; Mhahajan, C. G. J. Mol. Struct. 2009, 931, 10. https://doi.org/10.1016/j.molstruc.2009.05.015
- Guthmuller, J.; Champagne, B. ChemPhysChem. 2008, 9, 1667. https://doi.org/10.1002/cphc.200800253
Cited by
- Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions vol.4, pp.19, 2012, https://doi.org/10.1039/c2nr31410j
- Hg(II) Raman sensor of poly-L-lysine conformation change on gold nanoparticles vol.8, pp.4, 2014, https://doi.org/10.1007/s13206-014-8409-3
- Raman Spectroscopy of Di-(2-picolyl)amine on Gold Nanoparticles for Hg(II) Detection vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10054
- Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10058
- Detect, Remove and Reuse: A New Paradigm in Sensing and Removal of Hg (II) from Wastewater via SERS-Active ZnO/Ag Nanoarrays vol.49, pp.3, 2015, https://doi.org/10.1021/es503527e
- SERS-based mercury ion detections: principles, strategies and recent advances vol.59, pp.1, 2016, https://doi.org/10.1007/s11426-015-5504-9
- via cation–π interactions vol.13, pp.39, 2017, https://doi.org/10.1039/C7SM01447C
- ) ions in aqueous solution vol.7, pp.75, 2017, https://doi.org/10.1039/C7RA07992C
- CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3610