DOI QR코드

DOI QR Code

Photodissociation Dynamics of Allyl Alcohol in UV: The Exit Channel Barrier for OH Production

  • Lee, Ji-Hye (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kang, Tae-Yeon (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kwon, Chan-Ho (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Hyon-Seok (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kim, Hong-Lae (Department of Chemistry, College of Natural Sciences and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • 투고 : 2010.11.12
  • 심사 : 2010.12.01
  • 발행 : 2011.02.20

초록

Photodissociation dynamics of allyl alcohol ($H_2C$=CH-$CH_2OH$) has been investigated at 205 - 213 nm along the UV absorption band by measuring rotationally-resolved laser-induced fluorescence spectra of OH radicals. Observed energy partitioning of the available energy among products at all photon energies investigated was similar and the barrier energy for OH production is about 574.7 kJ/mol from the OH yield measurements. The potential energy surfaces for the $S_0$, $T_1$, and $S_1$ excited states along the dissociation coordinate were obtained by ab initio quantum chemical calculations. The observed energy partitioning was successfully modeled by the "barrier-impulsive model" with the reverse barrier and the geometry obtained by the calculated potential energy surfaces. The dissociation takes place on the $T_1$ excited state potential energy surface with an energy barrier in the exit channel and a large portion of the photon energy is distributed in the internal degrees of freedom of the polyatomic products.

키워드

참고문헌

  1. Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, 1993.
  2. Dhanya, S.; Kumar, A.; Upadhyaya, H. P.; Prakash, D. N.; Rameshwar, D. S. J. Phys. Chem. A 2004, 108, 7646. https://doi.org/10.1021/jp047657h
  3. Kang, T. Y.; Shin, S. K.; Kim, H. L. J. Phys. Chem. A 2003, 107, 10888. https://doi.org/10.1021/jp030589z
  4. Lee, J. H.; Hwang, H.; Kwon, C. H.; Kim, H. L. J. Phys. Chem. A 2010, 114, 2053. https://doi.org/10.1021/jp9091865
  5. Parsons, B. F.; Szpunar, D. E.; Butler, L. J. J. Phys. Chem. A 2000, 104, 10669. https://doi.org/10.1021/jp002224+
  6. Dieke, G. H.; Crosswhite, H. M. J. Quant. Spectrosc. Radiat. Transfer 1962, 2, 97. https://doi.org/10.1016/0022-4073(62)90061-4
  7. Chidsey, I. L.; Crosley, D. R. J. Quant. Spectrosc. Radiat. Transfer 1980, 23, 187. https://doi.org/10.1016/0022-4073(80)90006-0
  8. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626. https://doi.org/10.1063/1.1677740
  9. Tuck, A. F. J. Chem. Soc. Faraday Trans. II 1977, 73, 689. https://doi.org/10.1039/f29777300689
  10. Zamir, E.; Levin, R. D. Chem. Phys. 1980, 52, 253. https://doi.org/10.1016/0301-0104(80)85229-3
  11. Levin, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford Univ. Press: New York, 1987.
  12. Arunan, E.; Wategaonkar, S. J.; Setser, D. W. J. Phys. Chem. 1991, 95, 1539. https://doi.org/10.1021/j100157a008
  13. Dong, E.; Setser, D. W.; Hase, W. L.; Song, K. J. Phys. Chem. A 2006, 110, 1484. https://doi.org/10.1021/jp052888p
  14. Chang, A. H. H.; Hwang, D. W.; Yang, X. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T. J. Chem. Phys. 1999, 110, 10810. https://doi.org/10.1063/1.478999
  15. Gaussian 09; Gaussian Inc.: Pittsburgh, PA, 2009.
  16. Cramer, C. J. Essentials of Computational Chemistry; John Wiley & Sons: West Sussex, 2004.
  17. Kaduk, B.; Voorhis, T. V. J. Chem. Phys. 2010, 133, 061102. https://doi.org/10.1063/1.3470106