DOI QR코드

DOI QR Code

Onset of Natural Convection in Transient Hot Wire Device for Measuring Thermal Conductivity of Nanofluids

비정상열선법을 이용한 나노유체 열전도도 측정 시 자연대류 개시점에 대한 연구

  • Lee, Seung-Hyun (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.) ;
  • Kim, Hyun-Jin (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.) ;
  • Jang, Seok-Pil (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.)
  • 이승현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김현진 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.09.29
  • Accepted : 2010.12.07
  • Published : 2011.03.01

Abstract

We perform a numerical study to determine the time of onset of natural convection in a transient hot wire (THW) device for measuring the thermal conductivity of nanofluids. The samples used in this simulation are water-based $Al_2O_3$ nanofluids with volume fractions of 1%, 4%, and 10%, and the properties are calculated by theoretical models and experimental correlations. The THW apparatus using coated wire is modeled by the control-volume-based finite difference method, and the start of natural convection is determined by observing the temperature rise of the wire under a gravity field. The onset time is 11.5 s for water and 41.6 s for water-based $Al_2O_3$ nanofluids predicted by Maxwell thermal conductivity model with a 10% volume fraction. We confirm that the onset time of natural convection of nanofluids in the cylinder increases with the nanoparticle volume fraction. We suggest a correlation for predicting the onset time on the basis of the numerical results. Finally, it is shown that the measurement error due to natural convection is negligible if the measurement using the transient hot wire method is completed before the onset of natural convection in the base fluid.

본 논문에서는 비정상열선법을 이용한 나노유체의 열전도도 측정시, 자연대류 개시점을 수치적 방법을 통하여 파악해 보았다. 측정 유체는 부피비 1, 4, 10% 를 갖는 물-기반 알루미나 나노유체이고, 이에 대한 물성치는 기존 이론모델 및 실험적 상관관계식을 이용하여 계산하였다. 비정상열선법 장치는 FDM 방식으로 모델링 되었으며, 자연대류의 개시점은 중력장하의 열선의 온도변화를 관찰함으로써 파악하였다. 자연대류의 개시점은 물의 경우 11.5 초이고, 10% 부피비에서 Maxwell 모델로 열전도도를 예측한 알루미나 나노유체인 경우 41.6 초로 계산되었다. 특히 부피비가 증가할수록 자연대류가 늦게 발생함을 확인하였으며, 계산된 결과를 이용하여 비정상열선법의 실린더 내부에서 나노유체의 자연대류 개시점을 예측할 수 있는 관계식을 제시하였다. 또한 비정상열선법으로 열전도도를 측정할 때, 기본유체의 자연대류 발생시점 이전에 측정이 이루어진다면 나노유체의 열전도도 측정시 자연대류에 의한 측정오차는 무시할 수 있음을 확인하였다.

Keywords

References

  1. Choi, S. U. S., 2009, “Nanofluids: From Vision to Reality Through Research,” Journal of Heat Transfer Trans. of the ASME, Vol. 131, No. 3, pp. 033106-1-033106-9. https://doi.org/10.1115/1.3056479
  2. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Journal of Heat Transfer, Trans. of the ASME, Vol. 121, No. 2, pp. 280-289. https://doi.org/10.1115/1.2825978
  3. Eastman, J. A., Choi, S. U. S, Li, S., Thompson, L. J. and Lee, S., 1997, “Enhanced Thermal Conductivity Through the Development of Nanofluids,” Proceeding of the Symposium on Nanophase and Nanocomposite Materials II, Material Research Society, Boston, 1997, Vol. 457, pp. 3-11.
  4. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F. and Wu, Q., 2002, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” Journal of Applied Physics, Vol. 91, No. 7, pp. 4568-4572. https://doi.org/10.1063/1.1454184
  5. Zhang, X., Gu, H. and Fujii, M., 2006, “Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles,” Journal of Applied Physics, Vol. 100 No.4, pp. 044325. https://doi.org/10.1063/1.2259789
  6. Li, C. H., Williams, W., Buongiorno, J., Hu, L.-W. and Peterson, G. P., 2008, “Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of $Al_2O_3$/Water Nanofluids,” Journal of Heat Transfer Trans. of the ASME, Vol. 130, No. 4, pp. 042407. https://doi.org/10.1115/1.2789719
  7. Beck, M. P., Yuan, Y., Warrier, P. and Teja, A.S., 2010 “The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol+Water Mixtures,” Journal of Nanoparticle Research, Vol. 12, No. 4, pp.1469-1477. https://doi.org/10.1007/s11051-009-9716-9
  8. Yu, W., France, D. M., Routbort, J. L. and Choi , S. U. S., 2008, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Engineering, Vol. 29., No. 5, pp.432-460. https://doi.org/10.1080/01457630701850851
  9. Buongiorno, J. et al., 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” Journal of Applied Physics, Vol. 106, No. 9, pp. 094312. https://doi.org/10.1063/1.3245330
  10. Stalhane, B. and Pyk, S., 1931, “The New Method for Determining the Coefficients of Thermal Conductivity,” Technisk Tidskrift, Vol. 61, p. 389.
  11. Wakeham, W. A., Nagashima, A. and Sengers, J. V., 1991, Measurement of the Transport Properties of Fluids, Blackwell Science, London, Chap. 7.
  12. Healy J. J., de Groot J. J. and Kestin, J., 1976, “The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity,” Physica, Vol. 82, No. 2, pp. 392-408.
  13. Assael, M. J., Karagiannidis, L., Malamataris, N. and Wakeham, W. A., 1998, "The Transient Hot-Wire Technique:A Numerical Approach," International Journal of Thermophysics, Vol. 19, No. 2.
  14. Mohammadi, S. S., Graboski, M. S. and Sloan, E. D., 1981, “A Mathematical Model of a Ramp Forced Hot- Wire Thermal Conductivity Instrument,” International Journal of Heat and Mass Transfer, Vol. 24, No. 4, pp. 671-683. https://doi.org/10.1016/0017-9310(81)90011-9
  15. Rusconi R., Williams, W. C., Buongiorno, J., Piazza, R. and Hu, L.-W., 2007, "Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity," Int. J. Thermophys., Vol. 28, No. 4,.
  16. Carslaw, H. S. and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd ed., Oxford University Press, London.
  17. Nagasaka, Y. and Nagashima, A., 1981, “Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot- Wire Method,” Journal of Physics E: Scientific Instruments, Vol. 14, No. 12, pp. 1435-1440. https://doi.org/10.1088/0022-3735/14/12/020
  18. Zhou, S.-Q. and Ni, R., 2008, “Measurement of the Specific Heat Capacity of Water-Based $Al_2O_3$ Nanofluid,” Applied Physics Letter, Vol. 92, No. 9, pp. 093123. https://doi.org/10.1063/1.2890431
  19. Maxwell, J. C., 1873, A Treatise on Electricity and Magnetism, Oxford University Press, London, 1st ed., pp. 360-366.
  20. Jang, S. P. and Choi, S.U.S., 2004, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Applied Physics Letter, Vol. 84, No.21, pp. 4316-4318. https://doi.org/10.1063/1.1756684
  21. Pak, B. C. and Cho, Y. I., 1998, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Experimental Heat Transfer, Vol. 11, No. 2, pp. 151-170. https://doi.org/10.1080/08916159808946559
  22. Bejan, A., 2004, Convection Heat Transfer, John Wiley&Sons, 3rd ed., p.222.
  23. Hwang, K. S., Lee, J.-H., Jang, S. P., 2007, “Buoyancy-Driven Heat Transfer of Water-Based $Al_2O_3$ Nanofluids in a Rectangular Cavity,” International Journal of Heat and Mass Transfer, Vol. 50, No. 19-20, pp.4003-4010. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.037

Cited by

  1. Measurement of the Thermal-Conductivity Coefficient of Nanofluids by the Hot-Wire Method vol.88, pp.1, 2015, https://doi.org/10.1007/s10891-015-1177-7