DOI QR코드

DOI QR Code

주석 나노 입자의 상온 환원 합성에서 PVP Capping Agent의 분자량에 따른 입도 변화

Effect of PVP Molecular Weight on Size of Sn Nanoparticles Synthesized by Chemical Reduction

  • 장남이 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Jang, Nam-Ie (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 투고 : 2011.11.22
  • 심사 : 2011.12.13
  • 발행 : 2011.12.30

초록

Tin(II) acetate와 tin(II) chloride의 주석 precursor를 사용하여 상온에서의 강제 환원 반응으로 주석 나노 입자를 합성시켰다. 0.015 g의 동일한 PVP 양을 첨가한 조건에서 PVP의 분자량이 클수록 비정상적으로 큰 입자들의 생성율이 증가되어 입도 범위가 매우 넓은 주석 나노 입자들이 생성됨을 확인할 수 있었다. 합성된 주석 나노 입자를 함유하는 DEG 용액의 DSC 분석 결과 1차 가열에서는 35 nm 미만 특정 크기 입자들의 수가 충분한 경우에서 DEG의 증발 흡열피크 외에도 특정 크기 입자들의 융점 강하 흡열 피크가 구분되게 검출되었다. 1차 DSC 측정 중 용융된 주석 나노 입자들은 서로 접촉하며 뭉쳐지는 현상이 발생하므로 2차 가열시에는 벌크 주석의 용융 피크에 해당하는 $232^{\circ}C$ 흡열 피크만이 관찰되었다.

Tin nanoparticles were synthesized at room temperature by a compulsive reduction reaction using tin(II) acetate and tin(II) chloride precursors. When an identical amount (0.015 g) of polyvinyl pyrrolidone (PVP) was added, it was concluded that the probability of abnormally big particles forming increased with an increase in PVP molecular weight, resulting in the wide distribution of Sn nanoparticles. Differential scanning calorimetry measurements were carried out using diethylene glycol solution containing synthesized tin nanoparticles. When the population of specific particles with sizes below 35 nm was adequate, the melting point depression peaks of tin nanoparticles corresponding to the specific size were observed besides an evaporation endothermic peak of DEG during the first heating. Because DEG was evaporated and tin nanoparticles in contact became molten and coarsened during the first heating, a melting peak of bulk tin was only observed at $232^{\circ}C$ during the second heating.

키워드

참고문헌

  1. E. H. Amalu, W. K. Lau, N. N. Ekere, R. S. Bhatti, S. Mallik, K. C. Otiaba and G. Takyi, "A Study of SnAgCu Solder Paste Transfer Efficiency and Effects of Optimal Reflow Profile on Solder Deposits", Microelectron. Eng., 88, 1610 (2011). https://doi.org/10.1016/j.mee.2011.02.104
  2. T. -N. Tsai, "Improving the Fine-Pitch Stencil Printing Capability Using the Taguchi Method and Taguchi Fuzzy-Based Model", Robotics and Computer-Integrated Manuf., 27, 808 (2011). https://doi.org/10.1016/j.rcim.2011.01.002
  3. S. -J. Hong, J. -W. Kim, C. J. Han, Y. -S. Kim and T. -W. Hong, "Trends on Technology of Eco-Friendly Metal and Ceramic Nanoparticle Inks for Direct Printing", J. Microelctron. Packag. Soc., 17(2), 1 (2010).
  4. M. Takagi, "Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films", J. Phys. Soc. Jpn., 9, 359 (1954). https://doi.org/10.1143/JPSJ.9.359
  5. P. Buffat and J. P. Borel, "Size Effect on the Melting Temperature of Gold Particles", Phys. Rev. A, 13(6), 2287 (1976). https://doi.org/10.1103/PhysRevA.13.2287
  6. S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath and L. H. Allen, "Size-Dependant Melting Properties of Small Tin Particles: Nanocalorimetric Measurements", Phys. Rev. Lett., 77(1), 99 (1996). https://doi.org/10.1103/PhysRevLett.77.99
  7. C. Andersson, C. Zou, B. Yang, Y. Gao, J. Liu and Q. Zhai, "Recent Advances in the Synthesis of Lead-Free Solder Nanoparticle", Proc. 2nd Electronics System-Integration Technology Conference (ESTC), Greenwich, 915, IEEE (2008).
  8. C. D. Zou, Y. L. Gao, B. Yang, Q. J. Zhai, C. Andersson and J. Liu, "Melting Temperature Depression of Sn-0.4Co-0.7Cu Lead-Free Solder Nanoparticles", Solder. Surf. Mount Technol., 21(2), 9 (2009). https://doi.org/10.1108/09540910910947417
  9. Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlev and C. Schick, "Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy", J. Alloys Compd., 484, 777 (2009). https://doi.org/10.1016/j.jallcom.2009.05.042
  10. C. D. Zou, Y. L. Gao, B. Yang, X. Z. Xia, Q. J. Zhai, C. Andersson and J. Liu, "Nanoparticles of the Lead-Free Solder Alloy Sn-3.0Ag-0.5Cu with Large Melting Temperature Depression", J. Electron. Mater., 38(2), 351 (2009). https://doi.org/10.1007/s11664-008-0591-4
  11. H. Jiang, K. Moon, H. Dong, F. Hua and C. P. Wong, "Size- Dependent Melting Properties of Tin Nanoparticles", Chem. Phys. Lett., 429, 492 (2006). https://doi.org/10.1016/j.cplett.2006.08.027
  12. L. -Y. Hsiao and J. -G. Duh, "Revealing the Nucleation and Growth Mechanism of a Novel Solder Developed from Sn- 3.5Ag-0.5Cu Nanoparticles by a Chemical Reduction Method", J. Electron. Mater., 35(9), 1755 (2006). https://doi.org/10.1007/s11664-006-0230-x
  13. H. Jiang, K. Moon, F. Hua and C. P. Wong, "Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders", Chem. Mater., 19, 4482 (2007). https://doi.org/10.1021/cm0709976
  14. P. -C. Huang and J. -G. Duh, "Effects of Different Surfactant Additions and Treatments on the Characteristics of Tin Nanosolder by Chemical Reduction Method", Proc. 58th Electronic Components and Technology Conference (ECTC), Orlando, 431, IEEE CPMT (2008).
  15. H. Jiang, K. Moon and C. P. Wong, "Tin/Silver/Copper Alloy Nanoparticle Pastes for Low Temperature Lead-Free Interconnect Applications", Proc. 58th Electronic Components and Technology Conference (ECTC), Orlando, 1400, IEEE CPMT (2008).
  16. C. Y. Lin, U. S. Mohanty and J. H. Chou, "Synthesis and Characterization of Sn-3.5Ag-XZn Alloy Nanoparticles by the Chemical Reduction Method", J. Alloys Compd., 472, 281 (2009). https://doi.org/10.1016/j.jallcom.2008.04.063
  17. C. Zou, Y. Gao, B. Yang and Q. Zhai, "Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder", J. Mater. Sci.: Mater. Electron. 21, 868 (2010). https://doi.org/10.1007/s10854-009-0009-y
  18. C. Y. Lin, U. S. Mohanty and J. H. Chou, "High Temperature Synthesis of Sn-3.5Ag-0.5Zn Alloy Nanoparticles by Chemical Reduction Method", J. Alloys Compd., 501, 204 (2010). https://doi.org/10.1016/j.jallcom.2010.04.111
  19. Y. H. Jo, J. C. Park, J. U. Band, H. Song and H. M. Lee, "New Synthesis Approach for Low Temperature Bimetallic Nanoparticles: Size and Composition Controlled Sn-Cu Nanoparticles", J. Nanosci. Nanotecno., 11, 1037 (2011). https://doi.org/10.1166/jnn.2011.3052
  20. Y. H. Jo, I. Jung, C. S. Choi, I. Kim and H. M. Lee, "Synthesis and Characterization of Low Temperature Sn Nanoparticles for the Fabrication of Highly Conductive Ink", Nonatechnology, 22, 225701 (2011). https://doi.org/10.1088/0957-4484/22/22/225701
  21. P. Joang, S. -Y. Li, S. -S. Xie, Y. Gao and L. song, "Machinable Long PVP-Stabilized Silver Nanowires", Chem. Eur. J., 10, 4817 (2004). https://doi.org/10.1002/chem.200400318